Abstract
We determine square root domains for non-self-adjoint Sturm-Liouville operators of the type $$ L_{p,q,r,s} = - \frac{d}{dx}p\frac{d}{dx}+r\frac{d}{dx}-\frac{d}{dx}s+q $$ in $L^2((c,d);dx)$, where either $(c,d)$ coincides with the real line $\mathbb R$, the half-line $(a,\infty)$, $a \in \mathbb R$, or with the bounded interval $(a,b) \subset \mathbb R$, under very general conditions on the coefficients $q, r, s$. We treat Dirichlet and Neumann boundary conditions at $a$ in the half-line case, and Dirichlet and/or Neumann boundary conditions at $a,b$ in the final interval context. (In the particular case $p=1$ a.e. on $(a,b)$, we treat all separated boundary conditions at $a, b$.)
Key words: Square root domains, Kato problem, additive perturbations, Sturm–Liouville operators.
Full Text
Article Information
Title | On square root domains for non-self-adjoint Sturm-Liouville operators |
Source | Methods Funct. Anal. Topology, Vol. 19 (2013), no. 3, 227-259 |
MathSciNet |
MR3136729 |
zbMATH |
1289.47091 |
Milestones | Received 10/05/2013; Revised: 14/06/2013 |
Copyright | The Author(s) 2013 (CC BY-SA) |
Authors Information
Fritz Gesztesy
Department of Mathematics, University of Missouri, Columbia, MO 65211, USA
Steve Hofmann
Department of Mathematics, University of Missouri, Columbia, MO 65211, USA
Roger Nichols
Mathematics Department, The University of Tennessee at Chattanooga, 415 EMCS Building, Dept. 6956, 615 McCallie Ave, Chattanooga, TN 37403, USA
Citation Example
Fritz Gesztesy, Steve Hofmann, and Roger Nichols, On square root domains for non-self-adjoint Sturm-Liouville operators, Methods Funct. Anal. Topology 19
(2013), no. 3, 227-259.
BibTex
@article {MFAT697,
AUTHOR = {Gesztesy, Fritz and Hofmann, Steve and Nichols, Roger},
TITLE = {On square root domains for non-self-adjoint Sturm-Liouville operators},
JOURNAL = {Methods Funct. Anal. Topology},
FJOURNAL = {Methods of Functional Analysis and Topology},
VOLUME = {19},
YEAR = {2013},
NUMBER = {3},
PAGES = {227-259},
ISSN = {1029-3531},
MRNUMBER = {MR3136729},
ZBLNUMBER = {1289.47091},
URL = {http://mfat.imath.kiev.ua/article/?id=697},
}