Abstract
We prove, in separable Banach spaces, the existence of viable
solutions for the following higher-order functional differential
inclusion
$$
x^{(k)}(t) \in
F(t,T(t)x,x^{(1)}(t),...,x^{(k-1)}(t)),\quad\mbox{a.e. on }[0,\tau].
$$
We consider the case when the right-hand side is nonconvex and the
constraint is moving.
Доводиться існування в сепарабельних банахових просторах розв'язків на всьому інтервалі для функціонально-диференціальних включень
$$
x^{(k)}(t) \in F(t,T(t)x,x^{(1)}(t),...,x^{(k-1)}(t)),\quad\mbox{a.e. on }[0,\tau].
$$
Розглядається випадок неопуклої правої частини та рухомого обмеження.
Key words: Multifunction, measurability,
selection, functional differential inclusion.
Full Text
Article Information
Title | Viability result for higher-order functional
differential inclusions |
Source | Methods Funct. Anal. Topology, Vol. 26 (2020), no. 3, 189-200 |
DOI | 10.31392/MFAT-npu26_3.2020.01 |
MathSciNet |
MR4165151 |
Milestones | Received 26/02/2020 |
Copyright | The Author(s) 2020 (CC BY-SA) |
Authors Information
Myelkebir Aitalioubrahim
University Sultan Moulay Slimane, Faculty polydisciplinary, BP 592, Mghila, Beni Mellal, Morocco
Citation Example
Myelkebir Aitalioubrahim, Viability result for higher-order functional
differential inclusions, Methods Funct. Anal. Topology 26
(2020), no. 3, 189-200.
BibTex
@article {MFAT1391,
AUTHOR = {Myelkebir Aitalioubrahim},
TITLE = {Viability result for higher-order functional
differential inclusions},
JOURNAL = {Methods Funct. Anal. Topology},
FJOURNAL = {Methods of Functional Analysis and Topology},
VOLUME = {26},
YEAR = {2020},
NUMBER = {3},
PAGES = {189-200},
ISSN = {1029-3531},
MRNUMBER = {MR4165151},
DOI = {10.31392/MFAT-npu26_3.2020.01},
URL = {http://mfat.imath.kiev.ua/article/?id=1391},
}