Open Access

Viability result for higher-order functional differential inclusions


We prove, in separable Banach spaces, the existence of viable solutions for the following higher-order functional differential inclusion $$ x^{(k)}(t) \in F(t,T(t)x,x^{(1)}(t),...,x^{(k-1)}(t)),\quad\mbox{a.e. on }[0,\tau]. $$ We consider the case when the right-hand side is nonconvex and the constraint is moving.

Доводиться існування в сепарабельних банахових просторах розв'язків на всьому інтервалі для функціонально-диференціальних включень $$ x^{(k)}(t) \in F(t,T(t)x,x^{(1)}(t),...,x^{(k-1)}(t)),\quad\mbox{a.e. on }[0,\tau]. $$ Розглядається випадок неопуклої правої частини та рухомого обмеження.

Key words: Multifunction, measurability, selection, functional differential inclusion.

Full Text

Article Information

TitleViability result for higher-order functional differential inclusions
SourceMethods Funct. Anal. Topology, Vol. 26 (2020), no. 3, 189-200
MilestonesReceived 26/02/2020
CopyrightThe Author(s) 2020 (CC BY-SA)

Authors Information

Myelkebir Aitalioubrahim
University Sultan Moulay Slimane, Faculty polydisciplinary, BP 592, Mghila, Beni Mellal, Morocco

Google Scholar Metrics

Citing articles in Google Scholar
Similar articles in Google Scholar

Export article

Save to Mendeley

Citation Example

Myelkebir Aitalioubrahim, Viability result for higher-order functional differential inclusions, Methods Funct. Anal. Topology 26 (2020), no. 3, 189-200.


@article {MFAT1391,
    AUTHOR = {Myelkebir Aitalioubrahim},
     TITLE = {Viability result for higher-order functional
differential inclusions},
   JOURNAL = {Methods Funct. Anal. Topology},
  FJOURNAL = {Methods of Functional Analysis and Topology},
    VOLUME = {26},
      YEAR = {2020},
    NUMBER = {3},
     PAGES = {189-200},
      ISSN = {1029-3531},
       DOI = {10.31392/MFAT-npu26_3.2020.01},
       URL = {},


Coming Soon.

All Issues