Abstract
We give a characterization of K-g-fusion frames and discuss the
stability of dual g-fusion frames. We also present a necessary and
sufficient condition for a quotient operator to be bounded.
Надається характерізація K-g фреймів злиття та
розглядається стійкисть двоїстих g-фпеймів злиття. Також надаються
необхідні та достатні умови обмеженності оператора факторизації.
Key words: g-fusion frame, K-g-fusion frame, stability of a frame,
quotient operator.
Full Text
Article Information
Title | Stability of dual $g$-fusion frames in Hilbert spaces |
Source | Methods Funct. Anal. Topology, Vol. 26 (2020), no. 3, 227-240 |
DOI | 10.31392/MFAT-npu26_3.2020.04 |
MathSciNet |
MR4165154 |
Milestones | Received 04/08/2020; Revised 30/08/2020 |
Copyright | The Author(s) 2020 (CC BY-SA) |
Authors Information
Prasenjit Ghosh
Department of Pure Mathematics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
T. K. Samanta
Department of Mathematics, Uluberia College, Uluberia, Howrah, 711315, West Bengal, India
Citation Example
Prasenjit Ghosh and T. K. Samanta, Stability of dual $g$-fusion frames in Hilbert spaces, Methods Funct. Anal. Topology 26
(2020), no. 3, 227-240.
BibTex
@article {MFAT1395,
AUTHOR = {Prasenjit Ghosh and T. K. Samanta},
TITLE = {Stability of dual $g$-fusion frames in Hilbert spaces},
JOURNAL = {Methods Funct. Anal. Topology},
FJOURNAL = {Methods of Functional Analysis and Topology},
VOLUME = {26},
YEAR = {2020},
NUMBER = {3},
PAGES = {227-240},
ISSN = {1029-3531},
MRNUMBER = {MR4165154},
DOI = {10.31392/MFAT-npu26_3.2020.04},
URL = {http://mfat.imath.kiev.ua/article/?id=1395},
}