Open Access

Absolutely summing polynomials


Abstract

In this paper, we introduce an abstract approach to the notion of absolutely summing polynomials, and we explore several of its properties, among them that this class is a Banach ideal of homogeneous polynomials. As a consequence of the abstract approach introduced in this paper, we show that in addition to obtaining several previous results in different contexts as particular cases, it is possible to easily create new classes of homogeneous polynomials that are absolutely summing.

Розвинуто абстрактний підхід до поняття абсолютно підсумовуючих поліномів. Досліджуються їхні властивості, зокрема, показано, що цей клас є банаховим ідеалом однорідних поліномів. Наслідком абстактного підходу є не тільки результати, отримані раніше для спеціальних випадків, але й можливість побудови нових класів абсолютно підсумовуючих поліномів.

Key words: Banach sequence spaces, ideals of homogeneous polynomials, linear stability, finitely determined.


Full Text






Article Information

TitleAbsolutely summing polynomials
SourceMethods Funct. Anal. Topology, Vol. 27 (2021), no. 1, 74-87
DOI10.31392/MFAT-npu26_1.2021.09
MathSciNet   MR4253000
Milestones  Received 03/06/2020; Revised 01.09.2020
CopyrightThe Author(s) 2021 (CC BY-SA)

Authors Information

Joilson Ribeiro
Departamento de Matem´atica, Universidade Federal da Bahia, Bahia, Brazil

Fabricio Santos
Departamento de Matem´atica, Universidade Federal da Bahia, Bahia, Brazil


Export article

Save to Mendeley



Citation Example

Joilson Ribeiro and Fabricio Santos, Absolutely summing polynomials, Methods Funct. Anal. Topology 27 (2021), no. 1, 74-87.


BibTex

@article {MFAT1508,
    AUTHOR = {Joilson Ribeiro and Fabricio Santos},
     TITLE = {Absolutely summing polynomials},
   JOURNAL = {Methods Funct. Anal. Topology},
  FJOURNAL = {Methods of Functional Analysis and Topology},
    VOLUME = {27},
      YEAR = {2021},
    NUMBER = {1},
     PAGES = {74-87},
      ISSN = {1029-3531},
  MRNUMBER = {MR4253000},
       DOI = {10.31392/MFAT-npu26_1.2021.09},
       URL = {http://mfat.imath.kiev.ua/article/?id=1508},
}


References

Coming Soon.

All Issues