Open Access

Robin boundary conditions for the Laplacian on metric graph completions


Abstract

A generalization of Robin boundary conditions leading to self-adjoint operators is developed for the second derivative operator on metric graphs with compact completion and totally disconnected boundary. Harmonic functions and their properties play an essential role.

Для оператора другої похідної розроблено узагальнення граничних умов Робена, що веде до самоспряжених операторів на метричних графах з компактним поповненням і повністю незв'язною границею. Істотну роль відіграють гармонічні функції і їх властивості.

Key words: Quantum graph, harmonic functions on graphs, boundary value problems.


Full Text






Article Information

TitleRobin boundary conditions for the Laplacian on metric graph completions
SourceMethods Funct. Anal. Topology, Vol. 28 (2022), no. 1, 12-24
MathSciNet   MR4459180
Milestones  Received 09/12/2021; Revised 24/03/2022
CopyrightThe Author(s) 2022 (CC BY-SA)

Authors Information

Robert Carlson
Department of Mathematics, University of Colorado at Colorado Springs, Colorado Springs, CO 80918 USA


Export article

Save to Mendeley



Citation Example

Robert Carlson, Robin boundary conditions for the Laplacian on metric graph completions, Methods Funct. Anal. Topology 28 (2022), no. 1, 12-24.


BibTex

@article {MFAT1722,
    AUTHOR = {Robert Carlson},
     TITLE = {Robin boundary conditions for the Laplacian on metric graph completions},
   JOURNAL = {Methods Funct. Anal. Topology},
  FJOURNAL = {Methods of Functional Analysis and Topology},
    VOLUME = {28},
      YEAR = {2022},
    NUMBER = {1},
     PAGES = {12-24},
      ISSN = {1029-3531},
  MRNUMBER = {MR4459180},
       URL = {http://mfat.imath.kiev.ua/article/?id=1722},
}


References

Coming Soon.

All Issues