Open Access

Rothe time-discretization method for Nolinear Parabolic Problems


Abstract

In this paper we consider a class of nonlinear parabolic problems whose model is (*) (see pdf-file). Using time discretization technique and Rothe method we prove existence and uniqueness results for bounded weak solutions.

Використовуючи техніку дискретизації за часом та метод Рота, доведено існування та єдиність слабкого обмеженого розв'язку для нелінійних параболічних задач вигляду (*).

Key words: Nonlinear parabolic problem, Existence, weak solution, semi-discretization, uniqueness, Rothe method.


Full Text






Article Information

TitleRothe time-discretization method for Nolinear Parabolic Problems
SourceMethods Funct. Anal. Topology, Vol. 28 (2022), no. 1, 41-49
MathSciNet   MR4459182
Milestones  Received 18/04/2021; Revised 02/04/2022
CopyrightThe Author(s) 2022 (CC BY-SA)

Authors Information

N. Elharrar
Labo Math Appli, Faculty of Sciences, B. P. 20, El Jadida, Morocco.

J. Igbida
Labo DGTIC, Department of Mathematics, CRMEF Casablanca-Settat, El Jadida, Morocco.

H. Talibi
Labo Math Appli, Faculty of Sciences, B. P. 20, El Jadida, Morocco.


Export article

Save to Mendeley



Citation Example

N. Elharrar, J. Igbida, and H. Talibi, Rothe time-discretization method for Nolinear Parabolic Problems, Methods Funct. Anal. Topology 28 (2022), no. 1, 41-49.


BibTex

@article {MFAT1724,
    AUTHOR = {N. Elharrar and J. Igbida and H. Talibi},
     TITLE = {Rothe time-discretization method for Nolinear Parabolic Problems},
   JOURNAL = {Methods Funct. Anal. Topology},
  FJOURNAL = {Methods of Functional Analysis and Topology},
    VOLUME = {28},
      YEAR = {2022},
    NUMBER = {1},
     PAGES = {41-49},
      ISSN = {1029-3531},
  MRNUMBER = {MR4459182},
       URL = {http://mfat.imath.kiev.ua/article/?id=1724},
}


References

Coming Soon.

All Issues