Open Access

Existence of solutions for nonlinear integro-dynamic equations with mixed perturbations of the second type via Krasnoselskii's fixed point theorem


Abstract

We prove the existence of solutions of a nonlinear integro-dynamic equation with mixed perturbations of the second type on time scales. The main tool employed here is Krasnoselskii's fixed point theorem. An example is given to illustrate the main results.

Доведено існування розв’язків нелінійного інтегродинамічного рівняння зі змішаними збуреннями за часовою шкалою другого типу. Основним використаним інструментом є теорема Красносельського про нерухому точку. Наведено приклад для ілюстрації основних результатів.

Key words: Integro-dynamic equations, mixed perturbations of the second type, Krasnoselskii's fixed point theorem, existence.


Full Text






Article Information

TitleExistence of solutions for nonlinear integro-dynamic equations with mixed perturbations of the second type via Krasnoselskii's fixed point theorem
SourceMethods Funct. Anal. Topology, Vol. 28 (2022), no. 1, 58-65
MathSciNet   MR4459184
Milestones  Received 17/08/2021; Revised 11/10/2021
CopyrightThe Author(s) 2022 (CC BY-SA)

Authors Information

Abderrahim Guerfi
Applied Mathematics Lab, Faculty of Sciences, Department of Mathematics, University of Annaba, P.O. Box 12, Annaba, 23000, Algeria

Abdelouaheb Ardjouni
Department of Mathematics and Informatics, University of Souk Ahras, P.O. Box 1553, Souk Ahras, 41000, Algeria


Export article

Save to Mendeley



Citation Example

Abderrahim Guerfi and Abdelouaheb Ardjouni, Existence of solutions for nonlinear integro-dynamic equations with mixed perturbations of the second type via Krasnoselskii's fixed point theorem, Methods Funct. Anal. Topology 28 (2022), no. 1, 58-65.


BibTex

@article {MFAT1726,
    AUTHOR = {Abderrahim Guerfi and Abdelouaheb Ardjouni},
     TITLE = {Existence of solutions for nonlinear integro-dynamic equations with mixed perturbations of the second type via Krasnoselskii's fixed point theorem},
   JOURNAL = {Methods Funct. Anal. Topology},
  FJOURNAL = {Methods of Functional Analysis and Topology},
    VOLUME = {28},
      YEAR = {2022},
    NUMBER = {1},
     PAGES = {58-65},
      ISSN = {1029-3531},
  MRNUMBER = {MR4459184},
       URL = {http://mfat.imath.kiev.ua/article/?id=1726},
}


References

Coming Soon.

All Issues