Abstract
We prove the existence of solutions of a nonlinear integro-dynamic
equation with mixed perturbations of the second type on time
scales. The main tool employed here is Krasnoselskii's fixed point
theorem. An example is given to illustrate the main results.
Доведено існування розв’язків нелінійного
інтегродинамічного рівняння зі змішаними збуреннями за часовою
шкалою другого типу. Основним використаним інструментом є теорема
Красносельського про нерухому точку. Наведено приклад для ілюстрації
основних результатів.
Key words: Integro-dynamic equations, mixed perturbations of the second type, Krasnoselskii's fixed point theorem, existence.
Full Text
Article Information
Title | Existence of solutions for nonlinear integro-dynamic equations with mixed perturbations of the second type via Krasnoselskii's fixed point theorem |
Source | Methods Funct. Anal. Topology, Vol. 28 (2022), no. 1, 58-65 |
MathSciNet |
MR4459184 |
Milestones | Received 17/08/2021; Revised 11/10/2021 |
Copyright | The Author(s) 2022 (CC BY-SA) |
Authors Information
Abderrahim Guerfi
Applied Mathematics Lab, Faculty of Sciences, Department of Mathematics, University of Annaba, P.O. Box 12, Annaba, 23000, Algeria
Abdelouaheb Ardjouni
Department of Mathematics and Informatics, University of Souk Ahras, P.O. Box 1553, Souk Ahras, 41000, Algeria
Citation Example
Abderrahim Guerfi and Abdelouaheb Ardjouni, Existence of solutions for nonlinear integro-dynamic equations with mixed perturbations of the second type via Krasnoselskii's fixed point theorem, Methods Funct. Anal. Topology 28
(2022), no. 1, 58-65.
BibTex
@article {MFAT1726,
AUTHOR = {Abderrahim Guerfi and Abdelouaheb Ardjouni},
TITLE = {Existence of solutions for nonlinear integro-dynamic equations with mixed perturbations of the second type via Krasnoselskii's fixed point theorem},
JOURNAL = {Methods Funct. Anal. Topology},
FJOURNAL = {Methods of Functional Analysis and Topology},
VOLUME = {28},
YEAR = {2022},
NUMBER = {1},
PAGES = {58-65},
ISSN = {1029-3531},
MRNUMBER = {MR4459184},
URL = {http://mfat.imath.kiev.ua/article/?id=1726},
}