Open Access

Linear differential equations of higher orders in a Banach space and the Vandermonde operator


Abstract

We study the question of existence of a unique bounded solution to a Cauchy problem for a higher-order differential equation with bounded operator coefficients. The case under consideration is where the corresponding “algebraic” operator equation has separated pairwise commuting roots. Using the Vandermonde operator constructed from such roots, representations for a unique bounded solution and the Cauchy problem are obtained.

Вивчається питання iснування єдиного обмеженого рохв’язку задачi Кошi для диференцiального рiвняння вищого порядку з обмеженим оператором коефiцiєнтами. Розглядається випадок, в якому вiдповiдне “алгебраїчне” операторне рiвняння має вiдокремленi попарно коммутуючi коренi. Використовуючи оператор Вандермонда, який побудований за такими коренями, отримано представлення для єдиного обмеженого розв’язку задачi Кошi.

Key words: Banach space, higher-order differential equation, bounded solution, Cauchy problem, Vandermonde operator.


Full Text






Article Information

TitleLinear differential equations of higher orders in a Banach space and the Vandermonde operator
SourceMethods Funct. Anal. Topology, Vol. 28 (2022), no. 4, 295-301
DOI10.31392/MFAT-npu26_4.2022.02
MathSciNet   MR4685364
Milestones  Received 14/10/2022; Revised 28/11/2022
CopyrightThe Author(s) 2022 (CC BY-SA)

Authors Information

M. F. Horodnii
Received 14/10/2022; Revised 28/11/2022


Export article

Save to Mendeley



Citation Example

M. F. Horodnii, Linear differential equations of higher orders in a Banach space and the Vandermonde operator, Methods Funct. Anal. Topology 28 (2022), no. 4, 295-301.


BibTex

@article {MFAT1882,
    AUTHOR = {M. F. Horodnii},
     TITLE = {Linear differential equations of higher orders in a Banach space and the Vandermonde operator},
   JOURNAL = {Methods Funct. Anal. Topology},
  FJOURNAL = {Methods of Functional Analysis and Topology},
    VOLUME = {28},
      YEAR = {2022},
    NUMBER = {4},
     PAGES = {295-301},
      ISSN = {1029-3531},
  MRNUMBER = {MR4685364},
       DOI = {10.31392/MFAT-npu26_4.2022.02},
       URL = {http://mfat.imath.kiev.ua/article/?id=1882},
}


References

Coming Soon.

All Issues