Open Access

Regularized solutions for abstract Volterra equations


Abstract

The aim of this work is to introduce the domain and the Favard spaces of order $\alpha$ where $\alpha\in]0,1]$ for $k$-regularized resolvent family, extending some of the well-known theorems for semigroup and resolvent family. Furthermore, we show some relationship between the Favard temporal spaces and the Favard frequential spaces for scalar Volterra linear systems in Banach spaces, extending some results in [8,3].

Метою цієї роботи є ввести область та простори Фавара порядку $ \alpha$, де $ \alpha \in] 0,1] $ для $k $ -- регуляризованої сім'ї резольвент, та розширити деякі з добре відомих теорем для напівгруп і сімей резольвент. Крім того, ми показуємо деякий взаємозв'язок між часовими просторами Фавара та просторовими просторами Фавара для скалярних лінійних систем Вольтерра в банахових просторах, розширюючи деякі результати в [8,3].

Key words: Semigroups, Volterra integral equations, regularized resolvent families, Favard spaes.


Full Text






Article Information

TitleRegularized solutions for abstract Volterra equations
SourceMethods Funct. Anal. Topology, Vol. 28 (2022), no. 4, 309-323
DOI10.31392/MFAT-npu26_4.2022.04
MathSciNet   MR4685366
Milestones  Reeived 18/10/2022; Revised 25/10/2022
CopyrightThe Author(s) 2022 (CC BY-SA)

Authors Information

Fouad Maragh
Laboratory LMA, Department of Mathematis, Faulty of sienes, Ibn Zohr University, PB 80000 Agadir, Moroo.

Ahmed Fadili
Laboratory LIMATI, Department of Mathematis and Informatis, Polydisiplinary Faulty, Sultan Moulay Slimane University, Mghila, PB 592 Beni Mellal, Moroo.


Export article

Save to Mendeley



Citation Example

Fouad Maragh and Ahmed Fadili, Regularized solutions for abstract Volterra equations, Methods Funct. Anal. Topology 28 (2022), no. 4, 309-323.


BibTex

@article {MFAT1884,
    AUTHOR = {Fouad Maragh and Ahmed Fadili},
     TITLE = {Regularized solutions for abstract Volterra equations},
   JOURNAL = {Methods Funct. Anal. Topology},
  FJOURNAL = {Methods of Functional Analysis and Topology},
    VOLUME = {28},
      YEAR = {2022},
    NUMBER = {4},
     PAGES = {309-323},
      ISSN = {1029-3531},
  MRNUMBER = {MR4685366},
       DOI = {10.31392/MFAT-npu26_4.2022.04},
       URL = {http://mfat.imath.kiev.ua/article/?id=1884},
}


References

Coming Soon.

All Issues