Open Access

Solvability of nonlinear functional differential equations with state-dependent derivatives


Abstract

Existence of solutions of a functional differential equation where the sate depends on its derivative will be studied. Uniqueness of the solution will be analyzed and continuous dependence of the unique solution will be proved. Some examples will be given.

Буде вивчено існування розв'язків функціонально-диференціального рівняння, стан якого залежить від його похідної. Буде проаналізована єдиність розв'язку і доведено неперервну залежність єдиного розв'язку. Наведені деякі приклади.

Key words: Functional equations, sate–dependent, existence of solutions, continuous solutions, continuous dependence.


Full Text






Article Information

TitleSolvability of nonlinear functional differential equations with state-dependent derivatives
SourceMethods Funct. Anal. Topology, Vol. 29 (2023), no. 1-2, 30-38
DOI10.31392/MFAT-npu26_1–2.2023.03
MathSciNet   MR4753766
CopyrightThe Author(s) 2023 (CC BY-SA)

Authors Information

A. M. A. El-Sayed
Faculty of Science, Alexandria University, Egypt

Reda Gama
Faculty of Science, Al-Azhar University, Cairo, Egypt

H. R. Ebead
Faculty of Science, Alexandria University, Egypt


Export article

Save to Mendeley



Citation Example

A. M. A. El-Sayed, Reda Gama, and H. R. Ebead, Solvability of nonlinear functional differential equations with state-dependent derivatives, Methods Funct. Anal. Topology 29 (2023), no. 1, 30-38.


BibTex

@article {MFAT1909,
    AUTHOR = {A. M. A. El-Sayed and Reda Gama and H. R. Ebead},
     TITLE = {Solvability of nonlinear functional differential equations
  with state-dependent derivatives},
   JOURNAL = {Methods Funct. Anal. Topology},
  FJOURNAL = {Methods of Functional Analysis and Topology},
    VOLUME = {29},
      YEAR = {2023},
    NUMBER = {1},
     PAGES = {30-38},
      ISSN = {1029-3531},
  MRNUMBER = {MR4753766},
       DOI = {10.31392/MFAT-npu26_1–2.2023.03},
       URL = {http://mfat.imath.kiev.ua/article/?id=1909},
}


References

Coming Soon.

All Issues