Open Access

Smooth bilinear forms of ${\mathcal L}(^2\mathbb{R}_{h(w_1, w_2)}^2)$ and ${\mathcal L}(^2\mathbb{R}_{h^{'}(w_1, w_2)}^2)$


Abstract

We characterize smooth points of unit balls in some spaces of bilinear forms on $\mathbb{R}^2$. We find that for some special cases of hexagonal norms, the set of smooth points of the unit ball of symmetric bilinear forms coincides with the set of those smooth points of the unit ball of bilinear forms that are symmetric.

Надано характеристику гладким точкам одиничних куль в деяких просторах білінійних форм на $ \mathbb {R}^2$. Знайдено, що для деяких частинних випадків гексагональних норм множина гладких точок одиничної кулі співпадає з множиною тих гладких точок одиничної кулі білінійних форм, які є симетричними.

Key words: Bilinear forms, smooth points, certain hexagonal norms on $\mathbb{R}^2$.


Full Text






Article Information

TitleSmooth bilinear forms of ${\mathcal L}(^2\mathbb{R}_{h(w_1, w_2)}^2)$ and ${\mathcal L}(^2\mathbb{R}_{h^{'}(w_1, w_2)}^2)$
SourceMethods Funct. Anal. Topology, Vol. 29 (2023), no. 1-2, 39-56
DOI10.31392/MFAT-npu26_1--2.2023.04
MathSciNet   MR4753767
CopyrightThe Author(s) 2023 (CC BY-SA)

Authors Information

Sung Guen Kim
Department of Mathematics, Kyungpook National University, Daegu 702-701, South Korea

Chang Yeol Lee
Department of Mathematics, Kyungpook National University, Daegu 702-701, South Korea


Export article

Save to Mendeley



Citation Example

Sung Guen Kim and Chang Yeol Lee, Smooth bilinear forms of ${\mathcal L}(^2\mathbb{R}_{h(w_1, w_2)}^2)$ and ${\mathcal L}(^2\mathbb{R}_{h^{'}(w_1, w_2)}^2)$, Methods Funct. Anal. Topology 29 (2023), no. 1, 39-56.


BibTex

@article {MFAT1910,
    AUTHOR = {Sung Guen Kim and Chang Yeol Lee},
     TITLE = {Smooth bilinear forms 
  of ${\mathcal L}(^2\mathbb{R}_{h(w_1, w_2)}^2)$ and
  ${\mathcal L}(^2\mathbb{R}_{h^{'}(w_1,
    w_2)}^2)$},
   JOURNAL = {Methods Funct. Anal. Topology},
  FJOURNAL = {Methods of Functional Analysis and Topology},
    VOLUME = {29},
      YEAR = {2023},
    NUMBER = {1},
     PAGES = {39-56},
      ISSN = {1029-3531},
  MRNUMBER = {MR4753767},
       DOI = {10.31392/MFAT-npu26_1--2.2023.04},
       URL = {http://mfat.imath.kiev.ua/article/?id=1910},
}


References

Coming Soon.

All Issues