Abstract
This paper aims to study the concept of weaving operator frames
within Hilbert spaces $\mathcal{H}$. Properties of weaving operator
frames are explored. An investigation into the dual aspect of
weaving operator frames within $B(\mathcal{H})$ spaces is presented.
The behavior and characteristics of weaving operator responses
within the context of Hilbert spaces are discuted. Finally,
perturbation results concerning weaving operator frames are
obtained.
В статті вивчається концепція фреймів сплітаючих операторів
в гільбертових просторах $\mathcal{H}$. Досліджуються властивості
фреймів сплітаючих операторів. Вивчено подвійний аспект фреймів
сплітаючих операторів в просторах $B(\mathcal{H})$. Обговорено
поведінку та характеристики реакцій сплітаючего оператора в
контексті гільбертових просторів. Отримано результати збурення
фреймів сплітаючих операторів.
Key words: Frame; Operator frame; Weaving operator frame; $g$-Riesz basis.
Full Text
Article Information
Title | Weaving operator Frames for $B(\mathcal{H})$ |
Source | Methods Funct. Anal. Topology, Vol. 29 (2023), no. 3-4, 111-124 |
DOI | 10.31392/MFAT-npu26_3–4.2023.04 |
Copyright | The Author(s) 2023 (CC BY-SA) |
Authors Information
Mohamed Rossafi
Department of Mathematics, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
Khadija Mabrouk
Department of Mathematics, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
M'hamed Ghiati
Department of Mathematics, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
Mohammed Mouniane
Department of Mathematics, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
Citation Example
Mohamed Rossafi, Khadija Mabrouk, M'hamed Ghiati, and Mohammed Mouniane, Weaving operator Frames for $B(\mathcal{H})$, Methods Funct. Anal. Topology 29
(2023), no. 3, 111-124.
BibTex
@article {MFAT1944,
AUTHOR = {Mohamed Rossafi and Khadija Mabrouk and M'hamed Ghiati and Mohammed Mouniane},
TITLE = {Weaving operator Frames for $B(\mathcal{H})$},
JOURNAL = {Methods Funct. Anal. Topology},
FJOURNAL = {Methods of Functional Analysis and Topology},
VOLUME = {29},
YEAR = {2023},
NUMBER = {3},
PAGES = {111-124},
ISSN = {1029-3531},
DOI = {10.31392/MFAT-npu26_3–4.2023.04},
URL = {http://mfat.imath.kiev.ua/article/?id=1944},
}