Second degree semiclassical linear functionals of class one. The quasi-antisymmetric case
Abstract
An orthogonal sequence with respect to a regular linear functional
$w$ is said to be semiclassical if there exist a monic polynomial
$\Phi$ and a polynomial $\Psi$ with $\deg(\Psi)\geq1$, such that
$(\Phi w)^{'}+\Psi w=0$. Recently, all semiclassical monic
orthogonal polynomial sequences of class one satisfying a three term
recurrence relation with $\beta_{0}=-\alpha_{0}$,
$\beta_{n+1}=\alpha_{n}-\alpha_{n+1}$ and
$\gamma_{n+1}=-\alpha_{n}^{2}$ with $ \alpha_{n}\neq0\,,\;n\geq0,$
have been determined [17].
In this paper, we point sequences of the above family such that
their corresponding Stieltjes function
$S(w)(z)=-\displaystyle\sum_{n\geq0}\frac{(w)_{n}}{z^{n+1}}$
satisfies a quadratic equation $B(z)S^{2}(w)(z)+C(z)S(w)(z)+D(z)=0$,
where $B$, $C$, $D$ are polynomials.
Ортогональна послідовність відносно регулярного лінійного
функціонала $w$ називається напівкласичною, якщо існує моном $\Phi$
і поліном $\Psi$, $\deg(\Psi)\geq1$, такі, що
$(\Phi w)^{'}+\Psi w=0$. Останнім часом всі напівкласичні монічні
ортогональні поліноміальні послідовності першого класу, що
задовольняють тричленному рекурентному відношенню, коли
$\beta_{0}=-\alpha_{0}$, $\beta_{n+1}=\alpha_{n}-\alpha_{n+1}$ і
$\gamma_{n+1}=-\alpha_{n}^{2}$ з $ \alpha_{n}\neq0$, $n\geq0,$ були
визначені [17].
В статті вказуються послідовності вищевказаної сім'ї такі, що їх
відповідна функція Стілтьєса
$S(w)(z)=-\displaystyle\sum_{n\geq0}\frac{(w)_{n}}{z^{n+1}}$
задовольняє квадратичному рівнянню
$B(z)S^{2}(w)(z)+C(z)S(w)(z)+D(z)=0$, де $B$, $C$, $D$ - поліноми.
Key words: Orthogonal polynomials, Semiclassical linear functionals, Second degree linear functionals.