Open Access

Two-weighted inequality for parabolic sublinear operators in Lebesgue spaces

     Article (.pdf)

Abstract

In this paper, the author establishes the boundedness in weighted $L_p$ spaces on $\mathbb R^{n+1}$ with a parabolic metric for a large class of sublinear operators generated by parabolic Calderon-Zygmund kernels. The conditions of these theorems are satisfied by many important operators in analysis. Sufficient conditions on weighted functions $\omega$ and $\omega_1$ are given so that certain parabolic sublinear operator is bounded from the weighted Lebesgue spaces $L_{p,\omega}(\mathbb R^{n+1})$ into $L_{p,\omega_1}(\mathbb R^{n+1})$.


Full Text





Article Information

TitleTwo-weighted inequality for parabolic sublinear operators in Lebesgue spaces
SourceMethods Funct. Anal. Topology, Vol. 12 (2006), no. 1, 74-81
MathSciNet MR2210906
CopyrightThe Author(s) 2006 (CC BY-SA)

Authors Information

F. M. Mushtagov
Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences, F. Agaev str., bl. 10, Baku, Azerbaijan 


Citation Example

F. M. Mushtagov, Two-weighted inequality for parabolic sublinear operators in Lebesgue spaces, Methods Funct. Anal. Topology 12 (2006), no. 1, 74-81.


BibTex

@article {MFAT307,
    AUTHOR = {Mushtagov, F. M.},
     TITLE = {Two-weighted inequality for parabolic sublinear operators  in Lebesgue spaces},
   JOURNAL = {Methods Funct. Anal. Topology},
  FJOURNAL = {Methods of Functional Analysis and Topology},
    VOLUME = {12},
      YEAR = {2006},
    NUMBER = {1},
     PAGES = {74-81},
      ISSN = {1029-3531},
       URL = {http://mfat.imath.kiev.ua/article/?id=307},
}


Google Scholar Metrics

Citing articles in Google Scholar
Similar articles in Google Scholar


Export article

Save to Mendeley


All Issues