Abstract
We define a space of holomorphic functions $O_{1}(U,E/F)$, where $U$ is an open pseudo-convex subset of $\Bbb{C}^{n}$, $E$ is a b-space and $F$ is a bornologically closed subspace of $E$, and we prove that the b-spaces $O_{1}(U,E/F)$ and $O(U,E)/O(U,F)$ are isomorphic.
Key words: Holomorphic function, b-space, functor, category.
Full Text
Article Information
Title | Some results on the space of holomorphic functions taking their values in b-spaces |
Source | Methods Funct. Anal. Topology, Vol. 12 (2006), no. 2, 113-123 |
MathSciNet |
MR2238033 |
Copyright | The Author(s) 2006 (CC BY-SA) |
Authors Information
B. Aqzzouz
Universite Ibn Tofail, Facult ´ e des Sciences, D ´ epartement de Math ´ ematiques, Laboratoire ´ d’Analyse Fonctionnelle, Harmonique et Complexe, B.P. 133, Kenitra, Morocco
M. T. Belghiti
Universite Ibn Tofail, Facult ´ e des Sciences, D ´ epartement de Math ´ ematiques, Laboratoire ´ d’Analyse Fonctionnelle, Harmonique et Complexe, B.P. 133, Kenitra, Morocco
H. Elalj
Universite Ibn Tofail, Facult ´ e des Sciences, D ´ epartement de Math ´ ematiques, Laboratoire ´ d’Analyse Fonctionnelle, Harmonique et Complexe, B.P. 133, Kenitra, Morocco
R. Nouira
Universite Ibn Tofail, Facult ´ e des Sciences, D ´ epartement de Math ´ ematiques, Laboratoire ´ d’Analyse Fonctionnelle, Harmonique et Complexe, B.P. 133, Kenitra, Morocco
Citation Example
B. Aqzzouz, M. T. Belghiti, M. H. Elalj, and R. Nouira, Some results on the space of holomorphic functions taking their values in b-spaces, Methods Funct. Anal. Topology 12
(2006), no. 2, 113-123.
BibTex
@article {MFAT334,
AUTHOR = {Aqzzouz, B. and Belghiti, M. T. and Elalj, M. H. and Nouira, R.},
TITLE = {Some results on the space of holomorphic functions taking their values in b-spaces},
JOURNAL = {Methods Funct. Anal. Topology},
FJOURNAL = {Methods of Functional Analysis and Topology},
VOLUME = {12},
YEAR = {2006},
NUMBER = {2},
PAGES = {113-123},
ISSN = {1029-3531},
MRNUMBER = {MR2238033},
URL = {http://mfat.imath.kiev.ua/article/?id=334},
}