Open Access

The $\varepsilon_{\infty}$-product of a $b$-space by a quotient bornological space


Abstract

We define the $\varepsilon_{\infty }$-product of a Banach space $G$\ by a quotient bornological space $E\mid F$ that we denote by $G\varepsilon _{\infty }(E\mid F)$, and we prove that $G$ is an $% \mathcal{L}_{\infty }$-space if and only if the quotient bornological spaces $G\varepsilon _{\infty }(E\mid F)$ and $% (G\varepsilon E)\mid (G\varepsilon F)$ are isomorphic. Also, we show that the functor $\mathbf{.\varepsilon }_{\infty }\mathbf{.}:\mathbf{Ban\times qBan\longrightarrow qBan}$ is left exact. Finally, we define the $\varepsilon _{\infty }$-product of a b-space by a quotient bornological space and we prove that if $G$ is an $% \varepsilon $b-space\ and $E\mid F$ is a quotient bornological space, then $(G\varepsilon E)\mid (G\varepsilon F)$ is isomorphic to $G\varepsilon _{\infty }(E\mid F)$.


Full Text





Article Information

TitleThe $\varepsilon_{\infty}$-product of a $b$-space by a quotient bornological space
SourceMethods Funct. Anal. Topology, Vol. 13 (2007), no. 3, 211-222
MathSciNet MR2356755
CopyrightThe Author(s) 2007 (CC BY-SA)

Authors Information

Belmesnaoui Aqzzouz
Universite Ibn Tofail, Faculte des Sciences, Departement de Mathematiques, Laboratoire d'Analyse Fonctionnelle, Harmonique et Complexe, B.P. 133, Kenitra, Morocco


Google Scholar Metrics

Citing articles in Google Scholar
Similar articles in Google Scholar

Export article

Save to Mendeley



Citation Example

Belmesnaoui Aqzzouz, The $\varepsilon_{\infty}$-product of a $b$-space by a quotient bornological space, Methods Funct. Anal. Topology 13 (2007), no. 3, 211-222.


BibTex

@article {MFAT379,
    AUTHOR = {Aqzzouz, Belmesnaoui},
     TITLE = {The $\varepsilon_{\infty}$-product of a $b$-space by a quotient bornological space},
   JOURNAL = {Methods Funct. Anal. Topology},
  FJOURNAL = {Methods of Functional Analysis and Topology},
    VOLUME = {13},
      YEAR = {2007},
    NUMBER = {3},
     PAGES = {211-222},
      ISSN = {1029-3531},
       URL = {http://mfat.imath.kiev.ua/article/?id=379},
}


All Issues