Open Access

A note on equilibrium Glauber and Kawasaki dynamics for fermion point processes


Abstract

We construct two types of equilibrium dynamics of infinite particle systems in a locally compact Polish space $X$, for which certain fermion point processes are invariant. The Glauber dynamics is a birth-and-death process in $X$, while in the case of the Kawasaki dynamics interacting particles randomly hop over $X$. We establish conditions on generators of both dynamics under which corresponding conservative Markov processes exist.


Full Text






Article Information

TitleA note on equilibrium Glauber and Kawasaki dynamics for fermion point processes
SourceMethods Funct. Anal. Topology, Vol. 14 (2008), no. 1, 67-80
MathSciNet   MR2402154
CopyrightThe Author(s) 2008 (CC BY-SA)

Authors Information

Eugene Lytvynov
Department of Mathematics, University of Wales Swansea, Singleton Park, Swansea SA2 8PP, U.K.

Nataliya Ohlerich
Fakultat fur Mathematik, Universitat Bielefeld, Postfach 10 01 31, D-33501 Bielefeld, Germany; BiBoS, Universitat Bielefeld, Germany 


Export article

Save to Mendeley



Citation Example

Eugene Lytvynov and Nataliya Ohlerich, A note on equilibrium Glauber and Kawasaki dynamics for fermion point processes, Methods Funct. Anal. Topology 14 (2008), no. 1, 67-80.


BibTex

@article {MFAT424,
    AUTHOR = {Lytvynov, Eugene and Ohlerich, Nataliya},
     TITLE = {A note on equilibrium Glauber  and Kawasaki dynamics for fermion point processes},
   JOURNAL = {Methods Funct. Anal. Topology},
  FJOURNAL = {Methods of Functional Analysis and Topology},
    VOLUME = {14},
      YEAR = {2008},
    NUMBER = {1},
     PAGES = {67-80},
      ISSN = {1029-3531},
  MRNUMBER = {MR2402154},
       URL = {http://mfat.imath.kiev.ua/article/?id=424},
}


All Issues