Open Access

On equiangular configurations of subspaces of a Hilbert space


Abstract

In this paper, we find $\tau$, $0<\tau<1$, such that there exists an equiangular $(\Gamma, \tau)$-configuration of one-dimensional subspaces, and describe $(\Gamma, \tau)$-configurations that correspond to unicyclic graphs and to some graphs that have cyclomatic number satisfying $\nu(\Gamma) \geq 2$.


Full Text






Article Information

TitleOn equiangular configurations of subspaces of a Hilbert space
SourceMethods Funct. Anal. Topology, Vol. 17 (2011), no. 1, 84-96
MathSciNet   MR2815368
CopyrightThe Author(s) 2011 (CC BY-SA)

Authors Information

Yu. S. Samoilenko
Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereshchenkivs'ka, Kyiv, 01601, Ukraine

Yulia Yu. Yershova
Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereshchenkivs'ka, Kyiv, 01601, Ukraine 


Export article

Save to Mendeley



Citation Example

Yu. S. Samoilenko and Yulia Yu. Yershova, On equiangular configurations of subspaces of a Hilbert space, Methods Funct. Anal. Topology 17 (2011), no. 1, 84-96.


BibTex

@article {MFAT581,
    AUTHOR = {Samoilenko, Yu. S. and Yershova, Yulia Yu.},
     TITLE = {On equiangular configurations of subspaces of a Hilbert space},
   JOURNAL = {Methods Funct. Anal. Topology},
  FJOURNAL = {Methods of Functional Analysis and Topology},
    VOLUME = {17},
      YEAR = {2011},
    NUMBER = {1},
     PAGES = {84-96},
      ISSN = {1029-3531},
  MRNUMBER = {MR2815368},
       URL = {http://mfat.imath.kiev.ua/article/?id=581},
}


All Issues