Abstract
Characterizations and properties of $\mathcal{I}_{\hat{g}}$-closed sets and $\mathcal{I}_{\hat{g}}$-open sets are given. A characterization of normal spaces is given in terms of $\mathcal{I}_{\hat{g}}$-open sets. Also, it is established that an $\mathcal{I}_{\hat{g}}$-closed subset of an $\mathcal{I}$-compact space is $\mathcal{I}$-compact.
Full Text
Article Information
Title | $\hat{g}$-closed sets in ideal topological spaces |
Source | Methods Funct. Anal. Topology, Vol. 17 (2011), no. 3, 274-280 |
MathSciNet |
MR2857730 |
Copyright | The Author(s) 2011 (CC BY-SA) |
Authors Information
J. Antony Rex Rodrigo
Department of Mathematics, V. O. Chidambaram College, Thoothukudi, Tamil Nadu, India
O. Ravi
Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai Dt, Tamilnadu, India
A. Naliniramalatha
Department of Mathematics, Yadava College, Madurai, Tamilnadu, India
Citation Example
J. Antony Rex Rodrigo, O. Ravi, and A. Naliniramalatha, $\hat{g}$-closed sets in ideal topological spaces, Methods Funct. Anal. Topology 17
(2011), no. 3, 274-280.
BibTex
@article {MFAT584,
AUTHOR = {Antony Rex Rodrigo, J. and Ravi, O. and Naliniramalatha, A.},
TITLE = {$\hat{g}$-closed sets in ideal topological spaces},
JOURNAL = {Methods Funct. Anal. Topology},
FJOURNAL = {Methods of Functional Analysis and Topology},
VOLUME = {17},
YEAR = {2011},
NUMBER = {3},
PAGES = {274-280},
ISSN = {1029-3531},
MRNUMBER = {MR2857730},
URL = {http://mfat.imath.kiev.ua/article/?id=584},
}