Open Access

Hill's potentials in Hörmander spaces and their spectral gaps

     Article (.pdf)

Abstract

The paper deals with the Hill-Schrödinger operators with singular periodic potentials in the space $H^{\omega}(\mathbb{T})\subset H^{-1}(\mathbb{T})$. The authors exactly describe the classes of sequences being the lengths of spectral gaps of these operators. The functions $\omega$ may be nonmonotonic. The space $H^{\omega}(\mathbb{T})$ coincides with the Hörmander space $H_{2}^{\omega}(\mathbb{T})$ with the weight function $\omega(\sqrt{1+\xi^{2}})$ if $\omega$ is in the Avakumovich class $\mathrm{OR}$.


Full Text





Article Information

TitleHill's potentials in Hörmander spaces and their spectral gaps
SourceMethods Funct. Anal. Topology, Vol. 17 (2011), no. 3, 235-243
MathSciNet MR2857727
CopyrightThe Author(s) 2011 (CC BY-SA)

Authors Information

V. A. Mikhailets
Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereshchenkivs'ka, Kyiv, 01601, Ukraine

V. M. Molyboga
Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereshchenkivs'ka, Kyiv, 01601, Ukraine 


Citation Example

V. A. Mikhailets and V. M. Molyboga, Hill's potentials in Hörmander spaces and their spectral gaps, Methods Funct. Anal. Topology 17 (2011), no. 3, 235-243.


BibTex

@article {MFAT589,
    AUTHOR = {Mikhailets, V. A. and Molyboga, V. M.},
     TITLE = {Hill's potentials in Hörmander spaces and their spectral gaps},
   JOURNAL = {Methods Funct. Anal. Topology},
  FJOURNAL = {Methods of Functional Analysis and Topology},
    VOLUME = {17},
      YEAR = {2011},
    NUMBER = {3},
     PAGES = {235-243},
      ISSN = {1029-3531},
       URL = {http://mfat.imath.kiev.ua/article/?id=589},
}


Google Scholar Metrics

Citing articles in Google Scholar
Similar articles in Google Scholar


Export article

Save to Mendeley


All Issues