Abstract
In the present work we consider the Schrödinger operator $\mathrm{H_{X,\alpha}}=-\mathrm{\frac{d^2}{dx^2}}+\sum_{n=1}^{\infty}\alpha_n\delta(x-x_n)$ acting in $L^2(\mathbb{R}_+)$. We investigate and complete the conditions of self-adjointness and nontriviality of deficiency indices for $\mathrm{H_{X,\alpha}}$ obtained in [13]. We generalize the conditions found earlier in the special case $d_n:=x_{n}-x_{n-1}=1/n$, $n\in \mathbb{N}$, to a wider class of sequences $\{x_n\}_{n=1}^\infty$. Namely, for $x_n=\frac{1}{n^{\gamma}\ln^\eta n}$ with $\langle\gamma,\eta \rangle\in(1/2,\,1)\!\times\!(-\infty,+\infty)\:\cup\:\{1\}\!\times\!(-\infty,1]$, the description of asymptotic behavior of the sequence $\{\alpha_n\}_{n=1}^{\infty}$ is obtained for $\mathrm{H_{X,\alpha}}$ either to be self-adjoint or to have nontrivial deficiency indices.
Full Text
Article Information
Title | On self-adjontness of 1-D Schrödinger operators with $\delta$-interactions |
Source | Methods Funct. Anal. Topology, Vol. 18 (2012), no. 4, 360-372 |
MathSciNet |
MR3058462 |
zbMATH |
1289.34238 |
Copyright | The Author(s) 2012 (CC BY-SA) |
Authors Information
I. I. Karpenko
Tavrida National V. I. Vernadsky University, 4 Acad. Vernadsky Ave., Simferopol, 95007, Ukraine
D. L. Tyshkevich
Tavrida National V. I. Vernadsky University, 4 Acad. Vernadsky Ave., Simferopol, 95007, Ukraine
Citation Example
I. I. Karpenko and D. L. Tyshkevich, On self-adjontness of 1-D Schrödinger operators with $\delta$-interactions, Methods Funct. Anal. Topology 18
(2012), no. 4, 360-372.
BibTex
@article {MFAT623,
AUTHOR = {Karpenko, I. I. and Tyshkevich, D. L.},
TITLE = {On self-adjontness of 1-D Schrödinger operators with $\delta$-interactions},
JOURNAL = {Methods Funct. Anal. Topology},
FJOURNAL = {Methods of Functional Analysis and Topology},
VOLUME = {18},
YEAR = {2012},
NUMBER = {4},
PAGES = {360-372},
ISSN = {1029-3531},
MRNUMBER = {MR3058462},
ZBLNUMBER = {1289.34238},
URL = {http://mfat.imath.kiev.ua/article/?id=623},
}