Open Access

Schatten class operators on the Bergman space over bounded symmetric domain


Abstract

Let $\Omega$ be a bounded symmetric domain in $\mathbb{C}^{n}$ with Bergman kernel $K(z, w)$. Let $dV_{\lambda}(z)=K(z, z)\frac{dV(z)}{C_{\lambda}}$, where $C_{\lambda}=\displaystyle\int_{\Omega}K(z, z)^{\lambda}dV(z)$, $\lambda\in\mathbb{R}$, $dV(z)$ is the volume measure of $\Omega$ normalized so that $K(z, 0)=K(0, w)=1$. In this paper we have shown that if the Toeplitz operator $T_{\phi}$ defined on $L_{a}^{2}(\Omega, \frac{dV}{C_{0}})$ belongs to the Schatten $p$-class, $1\leq p<\infty$, then $\widetilde{\phi}\in L^{p}(\Omega, d\eta)$, where $d\eta(z)=K(z, z)\frac{dV(z)}{C_{0}}$ and $\widetilde{\phi}$ is the Berezin transform of $\phi$. Further if $\phi\in L^{p}(\Omega, d\eta_{\lambda})$, then $\widetilde{\phi_{\lambda}}\in L^{p}(\Omega, d\eta_{\lambda})$ and $T_{\phi}^{\lambda}$ belongs to Schatten $p$-class. Here $d\eta_{\lambda}=K(z, z)\frac{dV(z)}{C_{\lambda}}$, the function $\widetilde{\phi_{\lambda}}$ is the Berezin transform of $\phi$ in $L_{a}^{2}(\Omega, dV_{\lambda})$ and $T_{\phi}^{\lambda}$ is the Toeplitz operator defined on $L_{a}^{2}(\Omega, dV_{\lambda})$. We also find conditions on bounded linear operator $C$ defined from $L_{a}^{2}(\Omega, dV_{\lambda})$ into itself such that $C$ belongs to the Schatten $p$-class by comparing it with positive Toeplitz operators defined on $L_{a}^{2}(\Omega, dV_{\lambda})$. Applications of these results are obtained and we also present Schatten class characterization of little Hankel operators defined on $L_{a}^{2}(\Omega, dV_{\lambda})$.

Key words: Bergman space, bounded symmetric domain, Toeplitz operators, little Hankel operators, Schatten class.


Full Text






Article Information

TitleSchatten class operators on the Bergman space over bounded symmetric domain
SourceMethods Funct. Anal. Topology, Vol. 20 (2014), no. 3, 193-212
MathSciNet   MR3242704
zbMATH 1324.47052
Milestones  Received 19/09/2012
CopyrightThe Author(s) 2014 (CC BY-SA)

Authors Information

Namita Das P. G.
Department of Mathematics, Utkal University, Vani Vihar, Bhubaneswar, 751004, Odisha, India

Madhusmita Sahoo
School of Applied Sciences (Mathematics), KIIT University, Campus-3 (Kathajori Campus), Bhubaneswar, 751024, Odisha, India 


Export article

Save to Mendeley



Citation Example

Namita Das and Madhusmita Sahoo, Schatten class operators on the Bergman space over bounded symmetric domain, Methods Funct. Anal. Topology 20 (2014), no. 3, 193-212.


BibTex

@article {MFAT665,
    AUTHOR = {Das, Namita and Sahoo, Madhusmita},
     TITLE = {Schatten class operators on the Bergman space over bounded symmetric domain},
   JOURNAL = {Methods Funct. Anal. Topology},
  FJOURNAL = {Methods of Functional Analysis and Topology},
    VOLUME = {20},
      YEAR = {2014},
    NUMBER = {3},
     PAGES = {193-212},
      ISSN = {1029-3531},
  MRNUMBER = {MR3242704},
 ZBLNUMBER = {1324.47052},
       URL = {http://mfat.imath.kiev.ua/article/?id=665},
}


All Issues