Abstract
A bilateral sequence is a function whose domain is the set $Z$ of all integers with natural ordering. In this paper we study the continuous dual of the Banach space of $X$-valued bilateral sequence spaces $c_0(Z,X,\bar\lambda,
\bar p)$ and $c(Z,X,\bar\lambda,
\bar p)$.
Key words: Bilateral sequence, sequence space, continuous dual, Kothe-Toeplitz duals.
Full Text
Article Information
Title | Continuous dual of $c_0(Z,X,\bar\lambda,
\bar p)$ and $c(Z,X,\bar\lambda,
\bar p)$ |
Source | Methods Funct. Anal. Topology, Vol. 20 (2014), no. 1, 92-100 |
MathSciNet |
MR3242125 |
zbMATH |
1313.46005 |
Milestones | Received 21/11/2012; Revised 02/10/2013 |
Copyright | The Author(s) 2014 (CC BY-SA) |
Authors Information
Riti Agrawal
M.M.M. Engineering College Gorakhpur 273010, India
J. K. Srivastava
D.D.U. Gorakhpur University Gorakhpur 273009, India
Citation Example
Riti Agrawal and J. K. Srivastava, Continuous dual of $c_0(Z,X,\bar\lambda,
\bar p)$ and $c(Z,X,\bar\lambda,
\bar p)$, Methods Funct. Anal. Topology 20
(2014), no. 1, 92-100.
BibTex
@article {MFAT672,
AUTHOR = {Agrawal, Riti and Srivastava, J. K.},
TITLE = {Continuous dual of $c_0(Z,X,\bar\lambda,
\bar p)$ and $c(Z,X,\bar\lambda,
\bar p)$},
JOURNAL = {Methods Funct. Anal. Topology},
FJOURNAL = {Methods of Functional Analysis and Topology},
VOLUME = {20},
YEAR = {2014},
NUMBER = {1},
PAGES = {92-100},
ISSN = {1029-3531},
MRNUMBER = {MR3242125},
ZBLNUMBER = {1313.46005},
URL = {http://mfat.imath.kiev.ua/article/?id=672},
}