- MFAT
- Vol. 21 (2015), no. 2
- pp. 188–198
The projection spectral theorem and Jacobi fields
Eugene Lytvynov
Department of Mathematics, Swansea University, Singleton Park, Swansea SA2 8PP, U.K.
Abstract
We review several applications of Berezansky's projection spectral theorem to Jacobi fields in a symmetric Fock space, which lead to L\'evy white noise measures.
Key words: Free L´evy white noise, Gaussian measure, Jacobi field, L´evy white noise, Poisson measure, projection spectral theorem
Full Text
Article Information
| Title | The projection spectral theorem and Jacobi fields |
| Source | Methods Funct. Anal. Topology, Vol. 21 (2015), no. 2, 188–198 |
| MathSciNet | 3407910 |
| zbMATH | 06533476 |
| Milestones | Received 09/01/2015 |
| Copyright | The Author(s) 2015 (CC BY-SA) |
Authors Information
Eugene Lytvynov
Department of Mathematics, Swansea University, Singleton Park, Swansea SA2 8PP, U.K.
Google Scholar Metrics
Citing articles in Google Scholar
Similar articles in Google Scholar
Export article
Citation Example
Eugene Lytvynov, The projection spectral theorem and Jacobi fields, Methods Funct. Anal. Topology 21 (2015), no. 2, 188–198.
BibTex
@article {MFAT769,
AUTHOR = {Lytvynov, Eugene},
TITLE = {The projection spectral theorem and Jacobi fields},
JOURNAL = {Methods Funct. Anal. Topology},
FJOURNAL = {Methods of Functional Analysis and Topology},
VOLUME = {21},
YEAR = {2015},
NUMBER = {2},
PAGES = {188–198},
ISSN = {1029-3531},
MRNUMBER = {3407910},
ZBLNUMBER = {06533476},
URL = {https://mfat.imath.kiev.ua/article/?id=769},
}
References
- Ju. M. Berezans′kii, Expansions in eigenfunctions of selfadjoint operators, American Mathematical Society, Providence, R.I., 1968. MathSciNet
- Yu. M. Berezanskii, The projection spectral theorem, Uspekhi Mat. Nauk 39 (1984), no. 4(238), 3-52. MathSciNet
- Yu. M. Berezanskii, On the projection spectral theorem, Ukrain. Mat. Zh. 37 (1985), no. 2, 146-154, 269. MathSciNet
- Yu. M. Berezanskii, Selfadjoint operators in spaces of functions of infinitely many variables, American Mathematical Society, Providence, RI, 1986. MathSciNet
- Yu. M. Berezansky, Spectral approach to white noise analysis, in: Dynamics of complex and irregular systems (Bielefeld, 1991), World Sci. Publ., River Edge, NJ, 1993. MathSciNet
- Yurij M. Berezansky, Poisson measure as the spectral measure of Jacobi field, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 3 (2000), no. 1, 121-139. MathSciNet CrossRef
- Y. M. Berezansky, Y. G. Kondratiev, Spectral methods in infinite-dimensional analysis. Vol. 1, Kluwer Academic Publishers, Dordrecht, 1995. MathSciNet CrossRef
- Ju. M. Berezans′kii, V. D. Kovsmanenko, Axiomatic field theory in terms of operator Jacobi matrices, Teoret. Mat. Fiz. 8 (1971), no. 2, 175-191. MathSciNet
- Yu. M. Berezanskii, V. O. Livinskii, E. V. Litvinov, A spectral approach to the analysis of white noise, Ukrain. Mat. Zh. 46 (1994), no. 3, 177-197. MathSciNet CrossRef
- Marek Bo\.zejko, Eugene Lytvynov, Meixner class of non-commutative generalized stochastic processes with freely independent values. I. A characterization, Comm. Math. Phys. 292 (2009), no. 1, 99-129. MathSciNet CrossRef
- Marek Bo\.zejko, Eugene Lytvynov, Meixner class of non-commutative generalized stochastic processes with freely independent values II. The generating function, Comm. Math. Phys. 302 (2011), no. 2, 425-451. MathSciNet CrossRef
- S. Das, Orthogonal Decompositions for Generalized Stochastic Processes with Independent Values, PhD Dissertation, Swansea University, 2012.
- I. M. Gelfand, Ya. N. Vilenkin, Generalized functions. Vol. 4: Applications of harmonic analysis, Academic Press, New York - London, 1964, 1964. MathSciNet
- Takeyuki Hida, Hui-Hsiung Kuo, Jurgen Potthoff, Ludwig Streit, White noise, Kluwer Academic Publishers Group, Dordrecht, 1993. MathSciNet CrossRef
- Yoshifusa Ito, Izumi Kubo, Calculus on Gaussian and Poisson white noises, Nagoya Math. J. 111 (1988), 41-84. MathSciNet CrossRef
- Olav Kallenberg, Random measures, Akademie-Verlag, Berlin; Academic Press, London-New York, 1976. MathSciNet
- Y. Kondratiev, E. Lytvynov, A. Vershik, Laplace operators on the cone of Radon measures, in preparation.
- E. W. Lytvynov, Multiple Wiener integrals and non-Gaussian white noises: a Jacobi field approach, Methods Funct. Anal. Topology 1 (1995), no. 1, 61-85. MathSciNet
- Eugene Lytvynov, Fermion and boson random point processes as particle distributions of infinite free Fermi and Bose gases of finite density, Rev. Math. Phys. 14 (2002), no. 10, 1073-1098. MathSciNet CrossRef
- Eugene Lytvynov, Determinantal point processes with $J$-Hermitian correlation kernels, Ann. Probab. 41 (2013), no. 4, 2513-2543. MathSciNet CrossRef
- Roland Speicher, Free probability theory and non-crossing partitions, S\em. Lothar. Combin. 39 (1997), Art.\ B39c, 38 pp.\ (electronic). MathSciNet
- Natalia Tsilevich, Anatoly Vershik, Marc Yor, An infinite-dimensional analogue of the Lebesgue measure and distinguished properties of the gamma process, J. Funct. Anal. 185 (2001), no. 1, 274-296. MathSciNet CrossRef