- MFAT
- Vol. 21 (2015), no. 2
- pp. 151–169
Some applications of almost analytic extensions to operator bounds in trace ideals
F. Gesztesy
Department of Mathematics, University of Missouri, Columbia, MO 65211, USA
R. Nichols
Mathematics Department, The University of Tennessee at Chattanooga, 415 EMCS Building, Dept. 6956, 615 McCallie Ave, Chattanooga, TN 37403, USA
Abstract
Using the Davies-Helffer-Sjostrand functional calculus based on almost analytic extensions, we address the following problem: Given a self-adjoint operator $S$ in $\mathcal H$, and functions $f$ in an appropriate class, for instance, $f \in C_0^{\infty}(\mathbb R)$, how to control the norm $\|f(S)\|_{\mathcal B(\mathcal H)}$ in terms of the norm of the resolvent of $S$, $\|(S - z_0 I_{\mathcal H})^{-1}\|_{\mathcal B(\mathcal H)}$, for some $z_0 \in \mathbb C\backslash\mathbb R$. We are particularly interested in the case where $\mathcal B(\mathcal H)$ is replaced by a trace ideal, $\mathcal B_p(\mathcal H)$, $p \in [1,\infty)$.
Key words: Almost analytic extensions, trace ideals, operator bounds.
Full Text
Article Information
Title | Some applications of almost analytic extensions to operator bounds in trace ideals |
Source | Methods Funct. Anal. Topology, Vol. 21 (2015), no. 2, 151–169 |
MathSciNet | 3407907 |
zbMATH | 06533473 |
Milestones | Received 01/02/2015 |
Copyright | The Author(s) 2015 (CC BY-SA) |
Authors Information
F. Gesztesy
Department of Mathematics, University of Missouri, Columbia, MO 65211, USA
R. Nichols
Mathematics Department, The University of Tennessee at Chattanooga, 415 EMCS Building, Dept. 6956, 615 McCallie Ave, Chattanooga, TN 37403, USA
Google Scholar Metrics
Citing articles in Google Scholar
Similar articles in Google Scholar
Export article
Citation Example
Fritz Gesztesy and Roger Nichols, Some applications of almost analytic extensions to operator bounds in trace ideals, Methods Funct. Anal. Topology 21 (2015), no. 2, 151–169.
BibTex
@article {MFAT776, AUTHOR = {Gesztesy, Fritz and Nichols, Roger}, TITLE = {Some applications of almost analytic extensions to operator bounds in trace ideals}, JOURNAL = {Methods Funct. Anal. Topology}, FJOURNAL = {Methods of Functional Analysis and Topology}, VOLUME = {21}, YEAR = {2015}, NUMBER = {2}, PAGES = {151–169}, ISSN = {1029-3531}, MRNUMBER = {3407907}, ZBLNUMBER = {06533473}, URL = {http://mfat.imath.kiev.ua/article/?id=776}, }
References
- Andras Batkai, Eva Favsanga, The spectral mapping theorem for Davies functional calculus, Rev. Roumaine Math. Pures Appl. 48 (2003), no. 4, 365-372. MathSciNet
- Ju. M. Berezans′kii, Expansions in eigenfunctions of selfadjoint operators, American Mathematical Society, Providence, R.I., 1968. MathSciNet
- Yu. M. Berezanskii, Selfadjoint operators in spaces of functions of infinitely many variables, American Mathematical Society, Providence, RI, 1986. MathSciNet
- Yu. M. Berezansky, A. A. Kalyuzhnyi, Harmonic analysis in hypercomplex systems, Kluwer Academic Publishers, Dordrecht, 1998. MathSciNet CrossRef
- Y. M. Berezansky, Y. G. Kondratiev, Spectral methods in infinite-dimensional analysis. Vol. 1, Kluwer Academic Publishers, Dordrecht, 1995. MathSciNet CrossRef
- Y. M. Berezansky, Y. G. Kondratiev, Spectral methods in infinite-dimensional analysis. Vol. 2, Kluwer Academic Publishers, Dordrecht, 1995. MathSciNet CrossRef
- Yu. M. Berezansky, Z. G. Sheftel, G. F. Us, Functional Analysis, Vol. 1, Birkhauser Verlag, Basel-Boston-Berlin, 1996; 3rd ed., Institute of Mathematics NAS of Ukraine, Kyiv, 2010. (Russian edition: Vyshcha Shkola, Kiev, 1990)
- Yu. M. Berezansky, Z. G. Sheftel, G. F. Us, Functional Analysis, Vol. 2, Birkhauser Verlag, Basel-Boston-Berlin, 1996; 3rd ed., Institute of Mathematics NAS of Ukraine, Kyiv, 2010. (Russian edition: Vyshcha Shkola, Kiev, 1990)
- Mikhail Sh. Birman, Michael Solomyak, Double operator integrals in a Hilbert space, Integral Equations Operator Theory 47 (2003), no. 2, 131-168. MathSciNet CrossRef
- A. Carey, F. Gesztesy, G. Levitina, D. Potapov, F. Sukochev, and D. Zanin, On index theory for non-Fredholm operators: a $(1+1)$-dimensional example, Preprint, 2014.
- A. Carey, F. Gesztesy, G. Levitina, D. Potapov, F. Sukochev, and D. Zanin, Trace formulas for a $(1+1)$-dimensional model operator, Preprint, 2014.
- A. Carey, F. Gesztesy, G. Levitina, D. Potapov, F. Sukochev, and D. Zanin, On index theory for non-Fredholm operators: a $(2+1)$-dimensional example, in preparation.
- A. Carey, F. Gesztesy, G. Levitina, R. Nichols, D. Potapov, F. Sukochev, and D. Zanin, in preparation. \newpage
- A. Carey, F. Gesztesy, G. Levitina, and F. Sukochev, A framework for index theory applicable to non-Fredholm operators, Preprint, 2014.
- A. Carey, F. Gesztesy, D. Potapov, F. Sukochev, and Y. Tomilov, On the Witten index in terms of spectral shift functions; J. Analyse Math. (to appear) ArXiv:1404.0740
- Gilles Carron, Thierry Coulhon, El-Maati Ouhabaz, Gaussian estimates and $L^ p$-boundedness of Riesz means, J. Evol. Equ. 2 (2002), no. 3, 299-317. MathSciNet CrossRef
- Narinder S. Claire, Spectral mapping theorem for the Davies-Helffer-Sjostrand functional calculus, Zh. Mat. Fiz. Anal. Geom. 8 (2012), no. 3, 221-239, 296, 299. MathSciNet
- E. B. Davies, The functional calculus, J. London Math. Soc. (2) 52 (1995), no. 1, 166-176. MathSciNet CrossRef
- E. B. Davies, $L^ p$ spectral independence and $L^ 1$ analyticity, J. London Math. Soc. (2) 52 (1995), no. 1, 177-184. MathSciNet CrossRef
- E. B. Davies, Spectral theory and differential operators, Cambridge University Press, Cambridge, 1995. MathSciNet CrossRef
- Mouez Dimassi, Spectral shift function in the large coupling constant limit, Ann. Henri Poincar\e 7 (2006), no. 3, 513-525. MathSciNet CrossRef
- Mouez Dimassi, Anh Tuan Duong, Trace asymptotics formula for the Schrodinger operators with constant magnetic fields, J. Math. Anal. Appl. 416 (2014), no. 1, 427-448. MathSciNet CrossRef
- Mouez Dimassi, Vesselin Petkov, Spectral shift function and resonances for non-semi-bounded and Stark Hamiltonians, J. Math. Pures Appl. (9) 82 (2003), no. 10, 1303-1342. MathSciNet CrossRef
- Mouez Dimassi, Vesselin Petkov, Spectral shift function for operators with crossed magnetic and electric fields, Rev. Math. Phys. 22 (2010), no. 4, 355-380. MathSciNet CrossRef
- Mouez Dimassi, Johannes Sjostrand, Trace asymptotics via almost analytic extensions, in: Partial differential equations and mathematical physics (Copenhagen, 1995; Lund, 1995), Birkh\"auser Boston, Boston, MA, 1996. MathSciNet
- Mouez Dimassi, Johannes Sjostrand, Spectral asymptotics in the semi-classical limit, Cambridge University Press, Cambridge, 1999. MathSciNet CrossRef
- Mouez Dimassi, Maher Zerzeri, A time-independent approach for the study of spectral shift function, C. R. Math. Acad. Sci. Paris 350 (2012), no. 7-8, 375-378. MathSciNet CrossRef
- E. M. Dyn′kin, An operator calculus based on the Cauchy-Green formula, Zap. Nau\v cn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 30 (1972), 33-39. MathSciNet
- E. M. Dyn′kin, The pseudoanalytic extension, J. Anal. Math. 60 (1993), 45-70. MathSciNet
- Richard Froese, David Hasler, Wolfgang Spitzer, On the AC spectrum of one-dimensional random Schrodinger operators with matrix-valued potentials, Math. Phys. Anal. Geom. 13 (2010), no. 3, 219-233. MathSciNet CrossRef
- J. Frohlich, M. Griesemer, I. M. Sigal, Spectral theory for the standard model of non-relativistic QED, Comm. Math. Phys. 283 (2008), no. 3, 613-646. MathSciNet CrossRef
- Jose E. Gale, Pedro J. Miana, Tadeusz Pytlik, Spectral properties and norm estimates associated to the $C^ (k)_ c$-functional calculus, J. Operator Theory 48 (2002), no. 2, 385-418. MathSciNet
- Jose E. Gale, Tadeusz Pytlik, Functional calculus for infinitesimal generators of holomorphic semigroups, J. Funct. Anal. 150 (1997), no. 2, 307-355. MathSciNet CrossRef
- C. Gerard, Sharp propagation estimates for $N$-particle systems, Duke Math. J. 67 (1992), no. 3, 483-515. MathSciNet CrossRef
- Christian Gerard, A proof of the abstract limiting absorption principle by energy estimates, J. Funct. Anal. 254 (2008), no. 11, 2707-2724. MathSciNet CrossRef
- Fritz Gesztesy, Yuri Latushkin, Konstantin A. Makarov, Fedor Sukochev, Yuri Tomilov, The index formula and the spectral shift function for relatively trace class perturbations, Adv. Math. 227 (2011), no. 1, 319-420. MathSciNet CrossRef
- M. Griesemer, Exponential decay and ionization thresholds in non-relativistic quantum electrodynamics, J. Funct. Anal. 210 (2004), no. 2, 321-340. MathSciNet CrossRef
- H. R. Grumm, Two theorems about $\scr C_p$, Rep. Mathematical Phys. 4 (1973), 211-215. MathSciNet
- L. Hormander, Fourier Integral Operators: Lectures at the Nordic Summer School of Mathematics, 1969.
- B. Helffer, J. Sjostrand, \Equation de Schrodinger avec champ magnetique et equation de Harper, in: Schrodinger operators (So nderborg, 1988), Springer, Berlin, 1989. MathSciNet CrossRef
- B. Helffer, J. Sjostrand, On diamagnetism and de Haas-van Alphen effect, Ann. Inst. H. Poincar\e Phys. Th\eor. 52 (1990), no. 4, 303-375. MathSciNet CrossRef
- Arne Jensen, Shu Nakamura, Mapping properties of functions of Schrodinger operators between $L^ p$-spaces and Besov spaces, in: Spectral and scattering theory and applications, Math. Soc. Japan, Tokyo, 1994. MathSciNet
- Abdallah Khochman, Resonances and spectral shift function for the semi-classical Dirac operator, Rev. Math. Phys. 19 (2007), no. 10, 1071-1115. MathSciNet CrossRef
- G. Levitina, D. Potapov, and F. Sukochev, private communication, January 2015.
- Mircea Martin, Mihai Putinar, Lectures on hyponormal operators, Birkh\"auser Verlag, Basel, 1989. MathSciNet CrossRef
- Anders Melin, Johannes Sjostrand, Fourier integral operators with complex-valued phase functions, in: Fourier integral operators and partial differential equations (Colloq. Internat., Univ. Nice, Nice, 1974), Springer, Berlin, 1975. MathSciNet
- Sean ORourke, David Renfrew, Alexander Soshnikov, On fluctuations of matrix entries of regular functions of Wigner matrices with non-identically distributed entries, J. Theoret. Probab. 26 (2013), no. 3, 750-780. MathSciNet CrossRef
- Alessandro Pizzo, David Renfrew, Alexander Soshnikov, On finite rank deformations of Wigner matrices, Ann. Inst. Henri Poincar\e Probab. Stat. 49 (2013), no. 1, 64-94. MathSciNet CrossRef
- Alexander Pushnitski, The spectral flow, the Fredholm index, and the spectral shift function, in: Spectral theory of differential operators, Amer. Math. Soc., Providence, RI, 2008. MathSciNet
- Michael Reed, Barry Simon, Methods of modern mathematical physics. I, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980. MathSciNet
- Barry Simon, Trace ideals and their applications, American Mathematical Society, Providence, RI, 2005. MathSciNet
- Johannes Sjostrand, Maciej Zworski, Complex scaling and the distribution of scattering poles, J. Amer. Math. Soc. 4 (1991), no. 4, 729-769. MathSciNet CrossRef
- Erik Skibsted, Smoothness of $N$-body scattering amplitudes, Rev. Math. Phys. 4 (1992), no. 4, 619-658. MathSciNet CrossRef
- Joachim Weidmann, Linear operators in Hilbert spaces, Springer-Verlag, New York-Berlin, 1980. MathSciNet
- D. R. Yafaev, Mathematical scattering theory, American Mathematical Society, Providence, RI, 1992. MathSciNet
- D. R. Yafaev, A trace formula for the Dirac operator, Bull. London Math. Soc. 37 (2005), no. 6, 908-918. MathSciNet CrossRef