Open Access

Some applications of almost analytic extensions to operator bounds in trace ideals


Abstract

Using the Davies-Helffer-Sjostrand functional calculus based on almost analytic extensions, we address the following problem: Given a self-adjoint operator $S$ in $\mathcal H$, and functions $f$ in an appropriate class, for instance, $f \in C_0^{\infty}(\mathbb R)$, how to control the norm $\|f(S)\|_{\mathcal B(\mathcal H)}$ in terms of the norm of the resolvent of $S$, $\|(S - z_0 I_{\mathcal H})^{-1}\|_{\mathcal B(\mathcal H)}$, for some $z_0 \in \mathbb C\backslash\mathbb R$. We are particularly interested in the case where $\mathcal B(\mathcal H)$ is replaced by a trace ideal, $\mathcal B_p(\mathcal H)$, $p \in [1,\infty)$.

Key words: Almost analytic extensions, trace ideals, operator bounds.


Full Text






Article Information

TitleSome applications of almost analytic extensions to operator bounds in trace ideals
SourceMethods Funct. Anal. Topology, Vol. 21 (2015), no. 2, 151–169
MathSciNet   3407907
zbMATH 06533473
Milestones  Received 01/02/2015
CopyrightThe Author(s) 2015 (CC BY-SA)

Authors Information

F. Gesztesy
Department of Mathematics, University of Missouri, Columbia, MO 65211, USA

R. Nichols
Mathematics Department, The University of Tennessee at Chattanooga, 415 EMCS Building, Dept. 6956, 615 McCallie Ave, Chattanooga, TN 37403, USA


Export article

Save to Mendeley



Citation Example

Fritz Gesztesy and Roger Nichols, Some applications of almost analytic extensions to operator bounds in trace ideals, Methods Funct. Anal. Topology 21 (2015), no. 2, 151–169.


BibTex

@article {MFAT776,
    AUTHOR = {Gesztesy, Fritz and Nichols, Roger},
     TITLE = {Some applications of almost analytic extensions to operator bounds in trace ideals},
   JOURNAL = {Methods Funct. Anal. Topology},
  FJOURNAL = {Methods of Functional Analysis and Topology},
    VOLUME = {21},
      YEAR = {2015},
    NUMBER = {2},
     PAGES = {151–169},
      ISSN = {1029-3531},
  MRNUMBER = {3407907},
 ZBLNUMBER = {06533473},
       URL = {http://mfat.imath.kiev.ua/article/?id=776},
}


References

  1. Andras Batkai, Eva Favsanga, The spectral mapping theorem for Davies functional calculus, Rev. Roumaine Math. Pures Appl. 48 (2003), no. 4, 365-372.  MathSciNet 
  2. Ju. M. Berezans′kii, Expansions in eigenfunctions of selfadjoint operators, American Mathematical Society, Providence, R.I., 1968.  MathSciNet 
  3. Yu. M. Berezanskii, Selfadjoint operators in spaces of functions of infinitely many variables, American Mathematical Society, Providence, RI, 1986.  MathSciNet 
  4. Yu. M. Berezansky, A. A. Kalyuzhnyi, Harmonic analysis in hypercomplex systems, Kluwer Academic Publishers, Dordrecht, 1998.  MathSciNet  CrossRef
  5. Y. M. Berezansky, Y. G. Kondratiev, Spectral methods in infinite-dimensional analysis. Vol. 1, Kluwer Academic Publishers, Dordrecht, 1995.  MathSciNet  CrossRef
  6. Y. M. Berezansky, Y. G. Kondratiev, Spectral methods in infinite-dimensional analysis. Vol. 2, Kluwer Academic Publishers, Dordrecht, 1995.  MathSciNet  CrossRef
  7. Yu. M. Berezansky, Z. G. Sheftel, G. F. Us, Functional Analysis, Vol. 1, Birkhauser Verlag, Basel-Boston-Berlin, 1996; 3rd ed., Institute of Mathematics NAS of Ukraine, Kyiv, 2010. (Russian edition: Vyshcha Shkola, Kiev, 1990)
  8. Yu. M. Berezansky, Z. G. Sheftel, G. F. Us, Functional Analysis, Vol. 2, Birkhauser Verlag, Basel-Boston-Berlin, 1996; 3rd ed., Institute of Mathematics NAS of Ukraine, Kyiv, 2010. (Russian edition: Vyshcha Shkola, Kiev, 1990)
  9. Mikhail Sh. Birman, Michael Solomyak, Double operator integrals in a Hilbert space, Integral Equations Operator Theory 47 (2003), no. 2, 131-168.  MathSciNet  CrossRef
  10. A. Carey, F. Gesztesy, G. Levitina, D. Potapov, F. Sukochev, and D. Zanin, On index theory for non-Fredholm operators: a $(1+1)$-dimensional example, Preprint, 2014.
  11. A. Carey, F. Gesztesy, G. Levitina, D. Potapov, F. Sukochev, and D. Zanin, Trace formulas for a $(1+1)$-dimensional model operator, Preprint, 2014.
  12. A. Carey, F. Gesztesy, G. Levitina, D. Potapov, F. Sukochev, and D. Zanin, On index theory for non-Fredholm operators: a $(2+1)$-dimensional example, in preparation.
  13. A. Carey, F. Gesztesy, G. Levitina, R. Nichols, D. Potapov, F. Sukochev, and D. Zanin, in preparation. \newpage
  14. A. Carey, F. Gesztesy, G. Levitina, and F. Sukochev, A framework for index theory applicable to non-Fredholm operators, Preprint, 2014.
  15. A. Carey, F. Gesztesy, D. Potapov, F. Sukochev, and Y. Tomilov, On the Witten index in terms of spectral shift functions; J. Analyse Math. (to appear) ArXiv:1404.0740
  16. Gilles Carron, Thierry Coulhon, El-Maati Ouhabaz, Gaussian estimates and $L^ p$-boundedness of Riesz means, J. Evol. Equ. 2 (2002), no. 3, 299-317.  MathSciNet  CrossRef
  17. Narinder S. Claire, Spectral mapping theorem for the Davies-Helffer-Sjostrand functional calculus, Zh. Mat. Fiz. Anal. Geom. 8 (2012), no. 3, 221-239, 296, 299.  MathSciNet 
  18. E. B. Davies, The functional calculus, J. London Math. Soc. (2) 52 (1995), no. 1, 166-176.  MathSciNet  CrossRef
  19. E. B. Davies, $L^ p$ spectral independence and $L^ 1$ analyticity, J. London Math. Soc. (2) 52 (1995), no. 1, 177-184.  MathSciNet  CrossRef
  20. E. B. Davies, Spectral theory and differential operators, Cambridge University Press, Cambridge, 1995.  MathSciNet  CrossRef
  21. Mouez Dimassi, Spectral shift function in the large coupling constant limit, Ann. Henri Poincar\e 7 (2006), no. 3, 513-525.  MathSciNet  CrossRef
  22. Mouez Dimassi, Anh Tuan Duong, Trace asymptotics formula for the Schrodinger operators with constant magnetic fields, J. Math. Anal. Appl. 416 (2014), no. 1, 427-448.  MathSciNet  CrossRef
  23. Mouez Dimassi, Vesselin Petkov, Spectral shift function and resonances for non-semi-bounded and Stark Hamiltonians, J. Math. Pures Appl. (9) 82 (2003), no. 10, 1303-1342.  MathSciNet  CrossRef
  24. Mouez Dimassi, Vesselin Petkov, Spectral shift function for operators with crossed magnetic and electric fields, Rev. Math. Phys. 22 (2010), no. 4, 355-380.  MathSciNet  CrossRef
  25. Mouez Dimassi, Johannes Sjostrand, Trace asymptotics via almost analytic extensions, in: Partial differential equations and mathematical physics (Copenhagen, 1995; Lund, 1995), Birkh\"auser Boston, Boston, MA, 1996.  MathSciNet 
  26. Mouez Dimassi, Johannes Sjostrand, Spectral asymptotics in the semi-classical limit, Cambridge University Press, Cambridge, 1999.  MathSciNet  CrossRef
  27. Mouez Dimassi, Maher Zerzeri, A time-independent approach for the study of spectral shift function, C. R. Math. Acad. Sci. Paris 350 (2012), no. 7-8, 375-378.  MathSciNet  CrossRef
  28. E. M. Dyn′kin, An operator calculus based on the Cauchy-Green formula, Zap. Nau\v cn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 30 (1972), 33-39.  MathSciNet 
  29. E. M. Dyn′kin, The pseudoanalytic extension, J. Anal. Math. 60 (1993), 45-70.  MathSciNet 
  30. Richard Froese, David Hasler, Wolfgang Spitzer, On the AC spectrum of one-dimensional random Schrodinger operators with matrix-valued potentials, Math. Phys. Anal. Geom. 13 (2010), no. 3, 219-233.  MathSciNet  CrossRef
  31. J. Frohlich, M. Griesemer, I. M. Sigal, Spectral theory for the standard model of non-relativistic QED, Comm. Math. Phys. 283 (2008), no. 3, 613-646.  MathSciNet  CrossRef
  32. Jose E. Gale, Pedro J. Miana, Tadeusz Pytlik, Spectral properties and norm estimates associated to the $C^ (k)_ c$-functional calculus, J. Operator Theory 48 (2002), no. 2, 385-418.  MathSciNet 
  33. Jose E. Gale, Tadeusz Pytlik, Functional calculus for infinitesimal generators of holomorphic semigroups, J. Funct. Anal. 150 (1997), no. 2, 307-355.  MathSciNet  CrossRef
  34. C. Gerard, Sharp propagation estimates for $N$-particle systems, Duke Math. J. 67 (1992), no. 3, 483-515.  MathSciNet  CrossRef
  35. Christian Gerard, A proof of the abstract limiting absorption principle by energy estimates, J. Funct. Anal. 254 (2008), no. 11, 2707-2724.  MathSciNet  CrossRef
  36. Fritz Gesztesy, Yuri Latushkin, Konstantin A. Makarov, Fedor Sukochev, Yuri Tomilov, The index formula and the spectral shift function for relatively trace class perturbations, Adv. Math. 227 (2011), no. 1, 319-420.  MathSciNet  CrossRef
  37. M. Griesemer, Exponential decay and ionization thresholds in non-relativistic quantum electrodynamics, J. Funct. Anal. 210 (2004), no. 2, 321-340.  MathSciNet  CrossRef
  38. H. R. Grumm, Two theorems about $\scr C_p$, Rep. Mathematical Phys. 4 (1973), 211-215.  MathSciNet 
  39. L. Hormander, Fourier Integral Operators: Lectures at the Nordic Summer School of Mathematics, 1969.
  40. B. Helffer, J. Sjostrand, \Equation de Schrodinger avec champ magnetique et equation de Harper, in: Schrodinger operators (So nderborg, 1988), Springer, Berlin, 1989.  MathSciNet  CrossRef
  41. B. Helffer, J. Sjostrand, On diamagnetism and de Haas-van Alphen effect, Ann. Inst. H. Poincar\e Phys. Th\eor. 52 (1990), no. 4, 303-375.  MathSciNet  CrossRef
  42. Arne Jensen, Shu Nakamura, Mapping properties of functions of Schrodinger operators between $L^ p$-spaces and Besov spaces, in: Spectral and scattering theory and applications, Math. Soc. Japan, Tokyo, 1994.  MathSciNet 
  43. Abdallah Khochman, Resonances and spectral shift function for the semi-classical Dirac operator, Rev. Math. Phys. 19 (2007), no. 10, 1071-1115.  MathSciNet  CrossRef
  44. G. Levitina, D. Potapov, and F. Sukochev, private communication, January 2015.
  45. Mircea Martin, Mihai Putinar, Lectures on hyponormal operators, Birkh\"auser Verlag, Basel, 1989.  MathSciNet  CrossRef
  46. Anders Melin, Johannes Sjostrand, Fourier integral operators with complex-valued phase functions, in: Fourier integral operators and partial differential equations (Colloq. Internat., Univ. Nice, Nice, 1974), Springer, Berlin, 1975.  MathSciNet 
  47. Sean ORourke, David Renfrew, Alexander Soshnikov, On fluctuations of matrix entries of regular functions of Wigner matrices with non-identically distributed entries, J. Theoret. Probab. 26 (2013), no. 3, 750-780.  MathSciNet  CrossRef
  48. Alessandro Pizzo, David Renfrew, Alexander Soshnikov, On finite rank deformations of Wigner matrices, Ann. Inst. Henri Poincar\e Probab. Stat. 49 (2013), no. 1, 64-94.  MathSciNet  CrossRef
  49. Alexander Pushnitski, The spectral flow, the Fredholm index, and the spectral shift function, in: Spectral theory of differential operators, Amer. Math. Soc., Providence, RI, 2008.  MathSciNet 
  50. Michael Reed, Barry Simon, Methods of modern mathematical physics. I, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980.  MathSciNet 
  51. Barry Simon, Trace ideals and their applications, American Mathematical Society, Providence, RI, 2005.  MathSciNet 
  52. Johannes Sjostrand, Maciej Zworski, Complex scaling and the distribution of scattering poles, J. Amer. Math. Soc. 4 (1991), no. 4, 729-769.  MathSciNet  CrossRef
  53. Erik Skibsted, Smoothness of $N$-body scattering amplitudes, Rev. Math. Phys. 4 (1992), no. 4, 619-658.  MathSciNet  CrossRef
  54. Joachim Weidmann, Linear operators in Hilbert spaces, Springer-Verlag, New York-Berlin, 1980.  MathSciNet 
  55. D. R. Yafaev, Mathematical scattering theory, American Mathematical Society, Providence, RI, 1992.  MathSciNet 
  56. D. R. Yafaev, A trace formula for the Dirac operator, Bull. London Math. Soc. 37 (2005), no. 6, 908-918.  MathSciNet  CrossRef


All Issues