- MFAT
- Vol. 21 (2015), no. 3
- pp. 282-298
Tannaka-Krein duality for compact quantum group coactions (survey)
Leonid Vainerman
Universite de Caen, LMNO, Campus II, B.P. 5186, F-14032 Caen Cedex, France
Abstract
The last decade saw an appearance of a series of papers containing a very interesting development of the Tannaka-Krein duality for compact quantum group coactions on $C^*$-algebras. The present survey is intended to present the main ideas and constructions underlying this development.
Key words: Compact quantum group, coaction, Tannaka-Krein duality.
Full Text
Article Information
Title | Tannaka-Krein duality for compact quantum group coactions (survey) |
Source | Methods Funct. Anal. Topology, Vol. 21 (2015), no. 3, 282-298 |
MathSciNet | MR3521698 |
zbMATH | 06630274 |
Milestones | Received 01/02/2015 |
Copyright | The Author(s) 2015 (CC BY-SA) |
Authors Information
Leonid Vainerman
Universite de Caen, LMNO, Campus II, B.P. 5186, F-14032 Caen Cedex, France
Google Scholar Metrics
Citing articles in Google Scholar
Similar articles in Google Scholar
Export article
Citation Example
Leonid Vainerman, Tannaka-Krein duality for compact quantum group coactions (survey), Methods Funct. Anal. Topology 21 (2015), no. 3, 282-298.
BibTex
@article {MFAT778, AUTHOR = {Vainerman, Leonid}, TITLE = {Tannaka-Krein duality for compact quantum group coactions (survey)}, JOURNAL = {Methods Funct. Anal. Topology}, FJOURNAL = {Methods of Functional Analysis and Topology}, VOLUME = {21}, YEAR = {2015}, NUMBER = {3}, PAGES = {282-298}, ISSN = {1029-3531}, MRNUMBER = {MR3521698}, ZBLNUMBER = {06630274}, URL = {http://mfat.imath.kiev.ua/article/?id=778}, }
References
- Saad Baaj, Georges Skandalis, $C^ \ast$-alg\`ebres de Hopf et theorie de Kasparov equivariante, $K$-Theory 2 (1989), no. 6, 683-721. MathSciNet CrossRef
- Yu. M. Berezansky, A. A. Kalyuzhnyi, Harmonic analysis in hypercomplex systems, Kluwer Academic Publishers, Dordrecht, 1998. MathSciNet CrossRef
- Julien Bichon, Hopf-Galois objects and cogroupoids, Rev. Un. Mat. Argentina 55 (2014), no. 2, 11-69. MathSciNet
- Julien Bichon, An De Rijdt, Stefaan Vaes, Ergodic coactions with large multiplicity and monoidal equivalence of quantum groups, Comm. Math. Phys. 262 (2006), no. 3, 703-728. MathSciNet CrossRef
- Florin P. Boca, Ergodic actions of compact matrix pseudogroups on $C^ *$-algebras, Ast\erisque (1995), no. 232, 93-109. MathSciNet
- Kenny De Commer, Makoto Yamashita, Tannaka-Krei n duality for compact quantum homogeneous spaces. I. General theory, Theory Appl. Categ. 28 (2013), No. 31, 1099-1138. MathSciNet
- Kenny De Commer, Makoto Yamashita, Tannaka-Krei n duality for compact quantum homogeneous spaces II. Classification of quantum homogeneous spaces for quantum $\rm SU(2)$, J. Reine Angew. Math. 708 (2015), 143-171. MathSciNet
- Sergio Doplicher, John E. Roberts, A new duality theory for compact groups, Invent. Math. 98 (1989), no. 1, 157-218. MathSciNet CrossRef
- An De Rijdt, Nikolas Vander Vennet, Actions of monoidally equivalent compact quantum groups and applications to probabilistic boundaries, Ann. Inst. Fourier (Grenoble) 60 (2010), no. 1, 169-216. MathSciNet
- Michel Enock, Jean-Marie Schwartz, Kac algebras and duality of locally compact groups, Springer-Verlag, Berlin, 1992. MathSciNet CrossRef
- T. Hayashi, A canonical Tannaka duality for finite semisimple tensor categories, Preprint: math/9904073 [math.QA] (1999).
- Andre Joyal, Ross Street, An introduction to Tannaka duality and quantum groups, in: Category theory (Como, 1990), Springer, Berlin, 1991. MathSciNet CrossRef
- M. Krein, A principle of duality for bicompact groups and quadratic block algebras, Doklady Akad. Nauk SSSR (N.S.) 69 (1949), 725-728. MathSciNet
- E. C. Lance, Hilbert $C^ *$-modules, Cambridge University Press, Cambridge, 1995. MathSciNet CrossRef
- Magnus B. Landstad, Ergodic actions of nonabelian compact groups, in: Ideas and methods in mathematical analysis, stochastics, and applications (Oslo, 1988), Cambridge Univ. Press, Cambridge, 1992. MathSciNet
- Magnus B. Landstad, Simplicity of crossed products from ergodic actions of compact matrix pseudogroups, Ast\erisque (1995), no. 232, 111-114. MathSciNet
- Saunders MacLane, Categories for the working mathematician, Springer-Verlag, New York-Berlin, 1971. MathSciNet
- Sergey Neshveyev, Duality theory for nonergodic actions, Munster J. Math. 7 (2014), no. 2, 413-437. MathSciNet
- Sergey Neshveyev, Lars Tuset, Compact quantum groups and their representation categories, Soci\'et\'e Math\'ematique de France, Paris, 2013. MathSciNet
- Sergey Neshveyev, Lars Tuset, Hopf algebra equivariant cyclic cohomology, $K$-theory and index formulas, $K$-Theory 31 (2004), no. 4, 357-378. MathSciNet CrossRef
- Sergey Neshveyev, Makoto Yamashita, Categorical duality for Yetter-Drinfeld algebras, Doc. Math. 19 (2014), 1105-1139. MathSciNet
- Ryszard Nest, Christian Voigt, Equivariant Poincare duality for quantum group actions, J. Funct. Anal. 258 (2010), no. 5, 1466-1503. MathSciNet CrossRef
- Victor Ostrik, Module categories, weak Hopf algebras and modular invariants, Transform. Groups 8 (2003), no. 2, 177-206. MathSciNet CrossRef
- Claudia Pinzari, John E. Roberts, A duality theorem for ergodic actions of compact quantum groups on $C^ *$-algebras, Comm. Math. Phys. 277 (2008), no. 2, 385-421. MathSciNet CrossRef
- P. Podle\s, Quantum spheres, Lett. Math. Phys. 14 (1987), no. 3, 193-202. MathSciNet CrossRef
- Piotr Podle\s, Symmetries of quantum spaces. Subgroups and quotient spaces of quantum $\rm SU(2)$ and $\rm SO(3)$ groups, Comm. Math. Phys. 170 (1995), no. 1, 1-20. MathSciNet
- Pekka Salmi, Compact quantum subgroups and left invariant $C^ *$-subalgebras of locally compact quantum groups, J. Funct. Anal. 261 (2011), no. 1, 1-24. MathSciNet CrossRef
- Peter Schauenburg, Hopf bi-Galois extensions, Comm. Algebra 24 (1996), no. 12, 3797-3825. MathSciNet CrossRef
- Piotr M. So\ltan, Quantum Bohr compactification, Illinois J. Math. 49 (2005), no. 4, 1245-1270. MathSciNet
- T. Tannaka, Uber den Dualitatssatz der nichtkommutativen topologischen Gruppen, Tohoku Math. J. 45 (1938), no. 1, 1-12.
- Reiji Tomatsu, A characterization of right coideals of quotient type and its application to classification of Poisson boundaries, Comm. Math. Phys. 275 (2007), no. 1, 271-296. MathSciNet CrossRef
- Reiji Tomatsu, Compact quantum ergodic systems, J. Funct. Anal. 254 (2008), no. 1, 1-83. MathSciNet CrossRef
- V. G. Turaev, Quantum invariants of knots and 3-manifolds, Walter de Gruyter \& Co., Berlin, 1994. MathSciNet
- K.-H. Ulbrich, Fibre functors of finite-dimensional comodules, Manuscripta Math. 65 (1989), no. 1, 39-46. MathSciNet CrossRef
- R. Vergnioux, KK-theorie equivariante et operateur de Julg-Valette pour les groupes quantiques, PhD thesis, Universite Denis Diderot-Paris 7, 2002.
- Shuzhou Wang, Ergodic actions of universal quantum groups on operator algebras, Comm. Math. Phys. 203 (1999), no. 2, 481-498. MathSciNet CrossRef
- Antony Wassermann, Ergodic actions of compact groups on operator algebras. I. General theory, Ann. of Math. (2) 130 (1989), no. 2, 273-319. MathSciNet CrossRef
- Antony Wassermann, Ergodic actions of compact groups on operator algebras. II. Classification of full multiplicity ergodic actions, Canad. J. Math. 40 (1988), no. 6, 1482-1527. MathSciNet CrossRef
- Antony Wassermann, Ergodic actions of compact groups on operator algebras. III. Classification for $\rm SU(2)$, Invent. Math. 93 (1988), no. 2, 309-354. MathSciNet CrossRef
- S. L. Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys. 111 (1987), no. 4, 613-665. MathSciNet
- S. L. Woronowicz, Twisted $\rm SU(2)$ group. An example of a noncommutative differential calculus, Publ. Res. Inst. Math. Sci. 23 (1987), no. 1, 117-181. MathSciNet CrossRef
- S. L. Woronowicz, Compact quantum groups, in: Symetries quantiques (Les Houches, 1995), North-Holland, Amsterdam, 1998. MathSciNet
- S. L. Woronowicz, Tannaka-Krei n duality for compact matrix pseudogroups. Twisted $\rm SU(N)$ groups, Invent. Math. 93 (1988), no. 1, 35-76. MathSciNet CrossRef