- MFAT
- Vol. 21 (2015), no. 4
- pp. 370-402
Spectral and pseudospectral functions of Hamiltonian systems: development of the results by Arov-Dym and Sakhnovich
Abstract
The main object of the paper is a Hamiltonian system $J y'-B(t)y=\lambda\Delta(t) y$ defined on an interval $[a,b) $ with the regular endpoint $a$. We define a pseudo\-spectral function of a singular system as a matrix-valued distribution function such that the generalized Fourier transform is a partial isometry with the minimally possible kernel. Moreover, we parameterize all spectral and pseudospectral functions of a given system by means of a Nevanlinna boundary parameter. The obtained results develop the results by Arov-Dym and Sakhnovich in this direction.
Key words: Hamiltonian system, spectral function, pseudospectral function, Fourier transform, $m$-function.
Full Text
Article Information
Title | Spectral and pseudospectral functions of Hamiltonian systems: development of the results by Arov-Dym and Sakhnovich |
Source | Methods Funct. Anal. Topology, Vol. 21 (2015), no. 4, 370-402 |
MathSciNet | MR3469534 |
zbMATH | 06630280 |
Milestones | Received 13/02/2015; Revised 09/03/2015 |
Copyright | The Author(s) 2015 (CC BY-SA) |
Google Scholar Metrics
Citing articles in Google Scholar
Similar articles in Google Scholar
Export article
Citation Example
Vadim Mogilevskii, Spectral and pseudospectral functions of Hamiltonian systems: development of the results by Arov-Dym and Sakhnovich, Methods Funct. Anal. Topology 21 (2015), no. 4, 370-402.
BibTex
@article {MFAT784, AUTHOR = {Mogilevskii, Vadim}, TITLE = {Spectral and pseudospectral functions of Hamiltonian systems: development of the results by Arov-Dym and Sakhnovich}, JOURNAL = {Methods Funct. Anal. Topology}, FJOURNAL = {Methods of Functional Analysis and Topology}, VOLUME = {21}, YEAR = {2015}, NUMBER = {4}, PAGES = {370-402}, ISSN = {1029-3531}, MRNUMBER = {MR3469534}, ZBLNUMBER = {06630280}, URL = {http://mfat.imath.kiev.ua/article/?id=784}, }
References
- Sergio Albeverio, Mark Malamud, Vadim Mogilevskii, On Titchmarsh-Weyl functions and eigenfunction expansions of first-order symmetric systems, Integral Equations Operator Theory 77 (2013), no. 3, 303-354. MathSciNet CrossRef
- Damir Z. Arov, Harry Dym, Bitangential direct and inverse problems for systems of integral and differential equations, Cambridge University Press, Cambridge, 2012. MathSciNet CrossRef
- F. V. Atkinson, Discrete and continuous boundary problems, Academic Press, New York-London, 1964. MathSciNet
- Jussi Behrndt, Seppo Hassi, Henk Snoo de, Rudi Wietsma, Square-integrable solutions and Weyl functions for singular canonical systems, Math. Nachr. 284 (2011), no. 11-12, 1334-1384. MathSciNet CrossRef
- Ju. M. Berezans′kii, Expansions in eigenfunctions of selfadjoint operators, American Mathematical Society, Providence, R.I., 1968. MathSciNet
- V. M. Bruk, A certain class of boundary value problems with a spectral parameter in the boundary condition, Mat. Sb. (N.S.) 100(142) (1976), no. 2, 210-216. MathSciNet
- V. A. Derkach, S. Hassi, M. M. Malamud, H. S. V. Snoo de, Generalized resolvents of symmetric operators and admissibility, Methods Funct. Anal. Topology 6 (2000), no. 3, 24-55. MathSciNet
- Vladimir Derkach, Seppo Hassi, Mark Malamud, Henk Snoo de, Boundary relations and their Weyl families, Trans. Amer. Math. Soc. 358 (2006), no. 12, 5351-5400. MathSciNet CrossRef
- V. Derkach, S. Hassi, M. Malamud, H. Snoo de, Boundary relations and generalized resolvents of symmetric operators, Russ. J. Math. Phys. 16 (2009), no. 1, 17-60. MathSciNet CrossRef
- V. A. Derkach, M. M. Malamud, Generalized resolvents and the boundary value problems for Hermitian operators with gaps, J. Funct. Anal. 95 (1991), no. 1, 1-95. MathSciNet CrossRef
- V. A. Derkach, M. M. Malamud, Characteristic functions of almost solvable extensions of Hermitian operators, Ukrain. Mat. Zh. 44 (1992), no. 4, 435-459. MathSciNet CrossRef
- V. A. Derkach, M. M. Malamud, The extension theory of Hermitian operators and the moment problem, J. Math. Sci. 73 (1995), no. 2, 141-242. MathSciNet CrossRef
- Aad Dijksma, Heinz Langer, Henk Snoo de, Hamiltonian systems with eigenvalue depending boundary conditions, in: Contributions to operator theory and its applications (Mesa, AZ, 1987), Birkhauser, Basel, 1988. MathSciNet
- Aad Dijksma, Heinz Langer, Henk Snoo de, Eigenvalues and pole functions of Hamiltonian systems with eigenvalue depending boundary conditions, Math. Nachr. 161 (1993), 107-154. MathSciNet CrossRef
- Nelson Dunford, Jacob T. Schwartz, Linear operators. Part II: Spectral theory. Self adjoint operators in Hilbert space, Interscience Publishers John Wiley & Sons\ New York-London, 1963. MathSciNet
- I. C. Gohberg, M. G. Krein, Theory and applications of Volterra operators in Hilbert space, American Mathematical Society, Providence, R.I., 1970. MathSciNet
- Granichnye zadachi dlya differentsialno-operatornykh uravnenii, Akad. Nauk Ukrainy, Inst. Mat., Kiev, 1991. MathSciNet
- I. Kac, On Hilbert spaces generated by monotone Hermitian matrix-functions, Har′ kov Gos. Univ. U\v c. Zap. 34 = Zap. Mat. Otd. Fiz.-Mat. Fak. i Har′ kov. Mat. Ob\v s\v c. (4) 22 (1950), 95-113 (1951). MathSciNet
- I. S. Kats, Linear relations generated by a canonical differential equation of dimension 2, and eigenfunction expansions, Algebra i Analiz 14 (2002), no. 3, 86-120. MathSciNet
- I. S. Kac, M. G. Krein, On spectral functions of a string, Supplement to the Russian edition of F. V. Atkinson, Discrete and Continuous Boundary Problems, Mir, Moscow, 1968. (Russian); English transl. Amer. Math. Soc. Transl. Ser. 2 103, Amer. Math. Soc., Providence, RI, 1974, pp. 19-102.
- A. M. Khol′kin, Description of selfadjoint extensions of differential operators of arbitrary order on an infinite interval in the absolutely indeterminate case, Teor. Funktsi\u\i\ Funktsional. Anal. i Prilozhen. (1985), no. 44, 112-122. MathSciNet CrossRef
- V. I. Kogan, F. S. Rofe-Beketov, On square-integrable solutions of symmetric systems of differential equations of arbitrary order, Proc. Roy. Soc. Edinburgh Sect. A 74 (1974/75), 5-40 (1976). MathSciNet
- H. Langer, B. Textorius, Spectral functions of a symmetric linear relation with a directing mapping. I, Proc. Roy. Soc. Edinburgh Sect. A 97 (1984), 165-176. MathSciNet CrossRef
- H. Langer, B. Textorius, Spectral functions of a symmetric linear relation with a directing mapping. II, Proc. Roy. Soc. Edinburgh Sect. A 101 (1985), no. 1-2, 111-124. MathSciNet CrossRef
- Matthias Lesch, Mark Malamud, On the deficiency indices and self-adjointness of symmetric Hamiltonian systems, J. Differential Equations 189 (2003), no. 2, 556-615. MathSciNet CrossRef
- M. M. Malamud, On a formula for the generalized resolvents of a non-densely defined Hermitian operator, Ukrain. Mat. Zh. 44 (1992), no. 12, 1658-1688. MathSciNet CrossRef
- Vadim Mogilevskii, Boundary pairs and boundary conditions for general (not necessarily definite) first-order symmetric systems with arbitrary deficiency indices, Math. Nachr. 285 (2012), no. 14-15, 1895-1931. MathSciNet CrossRef
- V. I. Mogilevskii, On exit space extensions of symmetric operators with applications to first order symmetric systems, Methods Funct. Anal. Topology 19 (2013), no. 3, 268-292. MathSciNet
- V. I. Mogilevskii, On spectral and pseudospectral functions of first-order symmetric systems, 21 Jul. 2014. arXiv:1407.5398v1
- Vadim Mogilevskii, Characteristic matrices and spectral functions of first order symmetric systems with maximal deficiency index of the minimal relation, Methods Funct. Anal. Topology 21 (2015), no. 1, 76-98. MathSciNet
- Bruce Call Orcutt, Canonical Differential Equations, Thesis (Ph.D.)-University of Virginia, 1969. MathSciNet
- A. L. Sakhnovich, Spectral functions of a second-order canonical system, Mat. Sb. 181 (1990), no. 11, 1510-1524. MathSciNet
- Alexander L. Sakhnovich, Lev A. Sakhnovich, Inna Ya. Roitberg, Inverse problems and nonlinear evolution equations, De Gruyter, Berlin, 2013. MathSciNet CrossRef
- A. V. Straus, On generalized resolvents and spectral functions of differential operators of even order, Izv. Akad. Nauk SSSR. Ser. Mat. 21 (1957), 785-808. MathSciNet
- A. V. Straus, Extensions and characteristic function of a symmetric operator, Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968), 186-207. MathSciNet