Processing math: 100%
Open Access

Actions of finite groups and smooth functions on surfaces


Abstract

Let f:MR be a Morse function on a smooth closed surface, V be a connected component of some critical level of f, and EV be its atom. Let also S(f) be a stabilizer of the function f under the right action of the group of diffeomorphisms Diff(M) on the space of smooth functions on M, and SV(f)={hS(f)|h(V)=V}. The group SV(f) acts on the set π0EV of connected components of the boundary of EV. Therefore we have a homomorphism ϕ:S(f)Aut(π0EV). Let also G=ϕ(S(f)) be the image of S(f) in Aut(π0EV). Suppose that the inclusion EVMV induces a bijection π0EVπ0(MV). Let H be a subgroup of G. We present a sufficient condition for existence of a section s:HSV(f) of the homomorphism ϕ, so, the action of H on EV lifts to the H-action on M by f-preserving diffeomorphisms of M. This result holds for a larger class of smooth functions f:MR having the following property: for each critical point z of f the germ of f at z is smoothly equivalent to a homogeneous polynomial R2R without multiple linear factors.

Key words: Diffeomorphism, Morse function.


Full Text






Article Information

TitleActions of finite groups and smooth functions on surfaces
SourceMethods Funct. Anal. Topology, Vol. 22 (2016), no. 3, 210-219
MathSciNet   MR3554649
zbMATH 06742107
Milestones  Received 20/05/2016
CopyrightThe Author(s) 2016 (CC BY-SA)

Authors Information

Bohdan Feshchenko
Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereshchenkivs’ka, Kyiv, 01601, Ukraine


Export article

Save to Mendeley



Citation Example

Bohdan Feshchenko, Actions of finite groups and smooth functions on surfaces, Methods Funct. Anal. Topology 22 (2016), no. 3, 210-219.


BibTex

@article {MFAT883,
    AUTHOR = {Feshchenko, Bohdan},
     TITLE = {Actions of finite groups and smooth functions on surfaces},
   JOURNAL = {Methods Funct. Anal. Topology},
  FJOURNAL = {Methods of Functional Analysis and Topology},
    VOLUME = {22},
      YEAR = {2016},
    NUMBER = {3},
     PAGES = {210-219},
      ISSN = {1029-3531},
  MRNUMBER = {MR3554649},
 ZBLNUMBER = {06742107},
       URL = {http://mfat.imath.kiev.ua/article/?id=883},
}


References

  1. A. V. Bolsinov and A. T. Fomenko, Some actual unsolved problems in topology of integrable Hamiltonian systems, Topological classification in theory of Hamiltonian systems, Factorial, 1999, pp. 5-23.
  2. Yu. Brailov, Algebraic properties of symmetries of atoms, Topological classification in theory of Hamiltonian systems, Factorial, 1999, pp. 24-40.
  3. Yu. A. Brailov and E. A. Kudryavtseva, Stable topological nonconjugacy of Hamiltonian systems on two-dimensional surfaces, Moscow Univ. Math. Bull. 54 (1999), no. 2, 20-27.  MathSciNet
  4. E. N. Dancer, Degenerate critical points, homotopy indices and Morse inequalities, J. Reine Angew. Math. 350 (1984), 1-22.  MathSciNet CrossRef
  5. E. A. Kudryavtseva, Realization of smooth functions on surfaces as height functions, Mat. Sb. 190 (1999), no. 3, 29-88.  MathSciNet CrossRef
  6. E. A. Kudryavtseva and A. T. Fomenko, Symmetry groups of nice Morse functions on surfaces, Dokl. Akad. Nauk 446 (2012), no. 6, 615-617.  MathSciNet CrossRef
  7. E. A. Kudryavtseva and A. T. Fomenko, Each finite group is a symmetry group of some map (an “Atom”-bifurcation), Moscow Univ. Math. Bull. 68 (2013), no. 3, 148-155.  MathSciNet CrossRef
  8. Sergey Maksymenko, Smooth shifts along trajectories of flows, Topology Appl. 130 (2003), no. 2, 183-204.  MathSciNet CrossRef
  9. Sergiy Maksymenko, Homotopy types of stabilizers and orbits of Morse functions on surfaces, Ann. Global Anal. Geom. 29 (2006), no. 3, 241-285.  MathSciNet CrossRef
  10. Sergiy Maksymenko, Connected components of partition preserving diffeomorphisms, Methods Funct. Anal. Topology 15 (2009), no. 3, 264-279.  MathSciNet
  11. Sergiy Maksymenko, Deformations of functions on surfaces by isotopic to the identity diffeomorphisms, 2013  arXiv:1311.3347
  12. A. A. Oshemkov, Morse functions on two-dimensional surfaces. Coding of singularities, Trudy Mat. Inst. Steklov. 205 (1994), no. Novye Rezult. v Teor. Topol. Klassif. Integr. Sistem, 131-140.  MathSciNet
  13. A. O. Prishlyak, Topological equivalence of smooth functions with isolated critical points on a closed surface, Topology Appl. 119 (2002), no. 3, 257-267.  MathSciNet CrossRef
  14. R. T. Seeley, Extension of C functions defined in a half space, Proc. Amer. Math. Soc. 15 (1964), 625-626.  MathSciNet


All Issues