Open Access

Some results on order bounded almost weak Dunford-Pettis operators


Abstract

We give some new characterizations of almost weak Dunford-Pettis operators and we investigate their relationship with weak Dunford-Pettis operators.

Key words: Almost weak Dunford-Pettis operator, weak Dunford-Pettis operator, almost Dunford-Pettis set, almost (L)-set, Banach lattice.


Full Text





Article Information

TitleSome results on order bounded almost weak Dunford-Pettis operators
SourceMethods Funct. Anal. Topology, Vol. 22 (2016), no. 3, 256-265
MathSciNet MR3554652
zbMATH 06742110
MilestonesReceived 29/09/2015; Revised 25/02/2016
CopyrightThe Author(s) 2016 (CC BY-SA)

Authors Information

Nabil Machrafi
Université Ibn Tofaïl, Faculté des Sciences, Département de Mathématiques, B.P. 133, Kénitra 14000, Maroc

Aziz Elbour
Université Moulay Ismail, Faculté des Sciences et Techniques, Département de Mathématiques, B.P. 509, Errachidia 52000, Maroc

Mohammed Moussa
Université Ibn Tofaïl, Faculté des Sciences, Département de Mathématiques, B.P. 133, Kénitra 14000, Maroc


Google Scholar Metrics

Citing articles in Google Scholar
Similar articles in Google Scholar

Export article

Save to Mendeley



Citation Example

Nabil Machrafi, Aziz Elbour, and Mohammed Moussa, Some results on order bounded almost weak Dunford-Pettis operators, Methods Funct. Anal. Topology 22 (2016), no. 3, 256-265.


BibTex

@article {MFAT893,
    AUTHOR = {Machrafi, Nabil and Elbour, Aziz and Moussa, Mohammed},
     TITLE = {Some results on order bounded almost weak Dunford-Pettis operators},
   JOURNAL = {Methods Funct. Anal. Topology},
  FJOURNAL = {Methods of Functional Analysis and Topology},
    VOLUME = {22},
      YEAR = {2016},
    NUMBER = {3},
     PAGES = {256-265},
      ISSN = {1029-3531},
  MRNUMBER = {MR3554652},
 ZBLNUMBER = {06742110},
       URL = {http://mfat.imath.kiev.ua/article/?id=893},
}


References

  1. C. D. Aliprantis and O. Burkinshaw, Dunford-Pettis operators on Banach lattices, Trans. Amer. Math. Soc. 274 (1982), no. 1, 227-238.  MathSciNet CrossRef
  2. Charalambos D. Aliprantis and Owen Burkinshaw, Positive operators, Springer, Dordrecht, 2006.  MathSciNet CrossRef
  3. Belmesnaoui Aqzzouz and Khalid Bouras, (L) sets and almost (L) sets in Banach lattices, Quaest. Math. 36 (2013), no. 1, 107-118.  MathSciNet CrossRef
  4. Belmesnaoui Aqzzouz and Aziz Elbour, Some characterizations of almost Dunford-Pettis operators and applications, Positivity 15 (2011), no. 3, 369-380.  MathSciNet CrossRef
  5. Khalid Bouras, Almost Dunford-Pettis sets in Banach lattices, Rend. Circ. Mat. Palermo (2) 62 (2013), no. 2, 227-236.  MathSciNet CrossRef
  6. Khalid Bouras and Mohammed Moussa, On the class of positive almost weak Dunford-Pettis operators, Positivity 17 (2013), no. 3, 589-600.  MathSciNet CrossRef
  7. Z. L. Chen and A. W. Wickstead, Relative weak compactness of solid hulls in Banach lattices, Indag. Math. (N.S.) 9 (1998), no. 2, 187-196.  MathSciNet CrossRef
  8. P. G. Dodds and D. H. Fremlin, Compact operators in Banach lattices, Israel J. Math. 34 (1979), no. 4, 287-320 (1980).  MathSciNet CrossRef
  9. T. Leavelle, The Reciprocal Dunford-Pettis property, Ann. Mat. Pura Appl, to appear.
  10. Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. II, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97, Springer-Verlag, Berlin-New York, 1979.  MathSciNet
  11. Peter Meyer-Nieberg, Banach lattices, Universitext, Springer-Verlag, Berlin, 1991.  MathSciNet CrossRef
  12. Frank Rabiger, Beitrage zur Strukturtheorie der Grothendieck-Raume, Sitzungsberichte der Heidelberger Akademie der Wissenschaften. Mathematisch-Naturwissenschaftliche Klasse [Reports of the Heidelberg Academy of Science. Section for Mathematics and Natural Sciences], vol. 85, Springer-Verlag, Berlin, 1985.  MathSciNet CrossRef
  13. J. A. Sanchez, Operators on Banach lattices (Spanish), Ph. D. Thesis, Complutense University, Madrid 1985.
  14. Witold Wnuk, Banach lattices with properties of the Schur type--a survey, Confer. Sem. Mat. Univ. Bari (1993), no. 249, 25.  MathSciNet
  15. Witold Wnuk, Banach lattices with the weak Dunford-Pettis property, Atti Sem. Mat. Fis. Univ. Modena 42 (1994), no. 1, 227-236.  MathSciNet


All Issues