A. Elbour
orcid.org/0000-0002-8431-911X
Search this author in Google Scholar
Compactness properties of limited operator
MFAT 27 (2021), no. 3, 199-204
199-204
The aim of this paper is to investigate the relationship between
limited operators and weakly compact (resp. compact)
operators. Mainly, it is proved that if every limited operator
$T:E\rightarrow X$ from a Banach lattice $E$ into Banach space $X$
is weakly compact (resp. compact) then the norm of $
E^{\prime }$ is order continuous or $X$ has the (BD) property
(resp. GP property). Also, it is proved that if every weakly compact
operator $
T:E\rightarrow X$ is limited then the norm of $E^{\prime }$ is order
continuous or $X$ has the DP$^{\ast }$ property.
Метою цієї роботи є дослідження зв'язку між обмежувальними
операторами та слабо компактними (відповідно компактними)
операторами. Доведено, що якщо кожен обмежувальний оператор
$T : E\rightarrow X$ з банахової ґратки $E$ в банаховий простір $X$
є слабо компактним (відповідно компактним), то норма в $E^{\prime }$ є порядково
неперервною або $X$ має (BD)-властивість (відповідно
GP-властивість). Також доведено, що якщо кожний слабо компактний
оператор $T : E\rightarrow X$ обмежений, то норма в $E^{\prime }$ є порядково
неперервною або $X$ має DP$^{\ast }$-властивість.
Limited and Dunford-Pettis operators on Banach lattices
Khalid Bouras, Abdennabi EL Aloui, Aziz Elbour
MFAT 25 (2019), no. 3, 205-210
205-210
This paper is devoted to investigation of conditions on a pair of Banach lattices $E; F$ under which every positive Dunford-Pettis operator $T:E\rightarrow F$ is limited. Mainly, it is proved that if every positive Dunford-Pettis operator $T:E\rightarrow F$ is limited, then the norm on $E'$ is order continuous or $F$ is finite dimensional. Also, it is proved that every positive Dunford-Pettis operator $T:E\rightarrow F$ is limited, if one of the following statements is valid:
1) The norm on $E^{\prime }$ is order continuous, and $F^{\prime }$ has weak$^{\ast }$ sequentially continuous lattice operations.
2) The topological dual $E^{\prime }$is discrete and its norm is
order continuous.
3) The norm of $E^{\prime }$ is order continuous and the lattice
operations in $E^{^{\prime }}$ are weak$^{\ast }$ sequentially continuous.
4) The norms of $E$ and of $E^{\prime }$ are order continuous.
Some results on order bounded almost weak Dunford-Pettis operators
Nabil Machrafi, Aziz Elbour, Mohammed Moussa
MFAT 22 (2016), no. 3, 256-265
256-265
We give some new characterizations of almost weak Dunford-Pettis operators and we investigate their relationship with weak Dunford-Pettis operators.
Dunford-Pettis property of the product of some operators
Belmesnaoui Aqzzouz, Othman Aboutafail, Aziz Elbour
MFAT 17 (2011), no. 4, 295-299
295-299
We establish a sufficient condition under which the product of an order bounded almost Dunford-Pettis operator and an order weakly compact operator is Dunford-Pettis. And we derive some consequences.