- MFAT
- Vol. 22 (2016), no. 4
- pp. 346-374
Evolution of states and mesoscopic scaling for two-component birth-and-death dynamics in continuum
Martin Friesen
Department of Mathematics, Bielefeld University, Germany
Oleksandr Kutoviy
Department of Mathematics, Bielefeld University, Germany
Abstract
Two coupled spatial birth-and-death Markov evolutions on $\mathbb{R}^d$ are obtained as unique weak solutions to the associated Fokker-Planck equations. Such solutions are constructed by its associated sequence of correlation functions satisfying the so-called Ruelle-bound. Using the general scheme of Vlasov scaling we are able to derive a system of non-linear, non-local mesoscopic equations describing the effective density of the particle system. The results are applied to several models of ecology and biology.
Key words: Interacting particle systems, Fokker-Planck equations, Vlasov scaling, mesoscopic scaling.
Full Text
Article Information
Title | Evolution of states and mesoscopic scaling for two-component birth-and-death dynamics in continuum |
Source | Methods Funct. Anal. Topology, Vol. 22 (2016), no. 4, 346-374 |
MathSciNet | MR3591085 |
zbMATH | 06742116 |
Milestones | Received 30/08/2016; Revised 01.10.2016 |
Copyright | The Author(s) 2016 (CC BY-SA) |
Authors Information
Martin Friesen
Department of Mathematics, Bielefeld University, Germany
Oleksandr Kutoviy
Department of Mathematics, Bielefeld University, Germany
Google Scholar Metrics
Citing articles in Google Scholar
Similar articles in Google Scholar
Export article
Citation Example
Martin Friesen and Oleksandr Kutoviy, Evolution of states and mesoscopic scaling for two-component birth-and-death dynamics in continuum, Methods Funct. Anal. Topology 22 (2016), no. 4, 346-374.
BibTex
@article {MFAT914, AUTHOR = {Friesen, Martin and Kutoviy, Oleksandr}, TITLE = {Evolution of states and mesoscopic scaling for two-component birth-and-death dynamics in continuum}, JOURNAL = {Methods Funct. Anal. Topology}, FJOURNAL = {Methods of Functional Analysis and Topology}, VOLUME = {22}, YEAR = {2016}, NUMBER = {4}, PAGES = {346-374}, ISSN = {1029-3531}, MRNUMBER = {MR3591085}, ZBLNUMBER = {06742116}, URL = {http://mfat.imath.kiev.ua/article/?id=914}, }
References
- W. Arendt and A. Rhandi, Perturbation of positive semigroups, Arch. Math. (Basel) 56 (1991), no. 2, 107-119. MathSciNet CrossRef
- J. M. Ball, Strongly continuous semigroups, weak solutions, and the variation of constants formula, Proc. Amer. Math. Soc. 63 (1977), no. 2, 370-373. MathSciNet
- J. Banasiak and L. Arlotti, Perturbations of positive semigroups with applications, Springer Monographs in Mathematics, Springer-Verlag, London, 2006. MathSciNet
- B. Bolker, S. Cornell, D. Finkelshtein, Y. Kondratiev, O. Kutoviy, and O. Ovaskainen, A general mathematical framework for the analysis of spatio-temporal point processes, Theoretical Ecology 7 (2014), no. 1, 101-113.
- B. Bolker and S. W. Pacala, Spatial moment equations for plant competition: Understanding spatial strategies and the advantages of short dispersal, The American Naturalist 153 (1999), no. 6, 575-602.
- U. Dieckmann and R. Law, Relaxation projections and the method of moments, The geometry of ecological interactions: simplifying spatial complexity, Cambridge University Press, Cambridge, 2005, pp. 412-455. MathSciNet CrossRef
- K. Engel and R. Nagel, One-parameter semigroups for linear evolution equations, Graduate Texts in Mathematics, vol. 194, Springer-Verlag, New York, 2000. MathSciNet
- D. Finkelshtein, Functional evolutions for homogeneous stationary death-immigration spatial dynamics, Methods Funct. Anal. Topology 17 (2011), no. 4, 300-318. MathSciNet
- D. Finkelshtein, M. Friesen, H. Hatzikirou, Y. Kondratiev, T. Kruger, and O. Kutoviy, Stochastic models of tumour development and related mesoscopic equations, Inter. Stud. Comp. Sys. 7 (2015), 5-85.
- D. Finkelshtein, Y. Kondratiev, and O. Kutoviy, Vlasov scaling for stochastic dynamics of continuous systems, J. Stat. Phys. 141 (2010), no. 1, 158-178. MathSciNet CrossRef
- D. Finkelshtein, Y. Kondratiev, and O. Kutoviy, Semigroup approach to birth-and-death stochastic dynamics in continuum, J. Funct. Anal. 262 (2012), no. 3, 1274-1308. MathSciNet CrossRef
- D. Finkelshtein, Y. Kondratiev, and O. Kutoviy, Statistical dynamics of continuous systems: perturbative and approximative approaches, Arab. J. Math. 4 (2015), no. 4, 255-300. MathSciNet CrossRef
- D. Finkelshtein, Y. Kondratiev, O. Kutoviy, and M. J. Oliveira, Dynamical Widom-Rowlinson model and its mesoscopic limit, J. Stat. Phys. 158 (2015), no. 1, 57-86. MathSciNet CrossRef
- D. Finkelshtein, Y. Kondratiev, O. Kutoviy, and E. Zhizhina, An approximative approach for construction of the Glauber dynamics in continuum, Math. Nachr. 285 (2012), no. 2-3, 223-235. MathSciNet CrossRef
- D. L. Finkelshtein, On convolutions on configuration spaces. I. Spaces of finite configurations, Ukrainian Math. J. 64 (2013), no. 11, 1752-1775. MathSciNet CrossRef
- D. L. Finkelshtein, Measures on two-component configuration spaces, Cond. Matt. Phys. 12 (2015), no. 1, 5-18. CrossRef
- D. L. Finkelshtein, Y. G. Kondratiev, and M. J. Oliveira, Markov evolutions and hierarchical equations in the continuum. II: Multicomponent systems, Rep. Math. Phys. 71 (2013), no. 1, 123-148. MathSciNet CrossRef
- M. Friesen, Non-autonomous interacting particle systems in continuum, Methods Funct. Anal. Topology 22 (2016), no. 3, 220-244. MFAT Article
- M. Friesen, Non-equilibrium dynamics for a Widom-Rowlinson type model with mutations, (2016), arXiv:1609.01929
- M. Friesen and Kondratiev Y., Weak-coupling limits in ergodic environments, 2016, in preperation
- N. L. Garcia and T. G. Kurtz, Spatial birth and death processes as solutions of stochastic equations, ALEA Lat. Am. J. Probab. Math. Stat. 1 (2006), 281-303. MathSciNet
- H.-O. Georgii and O. Haggstrom, Phase transition in continuum Potts models, Comm. Math. Phys. 181 (1996), no. 2, 507-528. MathSciNet
- Y. Kondratiev and Y. Kozitsky, The Evolution of States in a Spatial Population Model, J. Dyn. Diff. Equat. 28 (2016), no. 1, 1-39.
- Y. Kondratiev, O. Kutoviy, and R. Minlos, On non-equilibrium stochastic dynamics for interacting particle systems in continuum, J. Funct. Anal. 255 (2008), no. 1, 200-227. MathSciNet CrossRef
- Y. Kondratiev, O. Kutoviy, and S. Pirogov, Correlation functions and invariant measures in continuous contact model, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 11 (2008), no. 2, 231-258. MathSciNet CrossRef
- Y. Kondratiev and A. Skorokhod, On contact processes in continuum, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 9 (2006), no. 2, 187-198. MathSciNet CrossRef
- Y. G. Kondratiev and T. Kuna, Harmonic analysis on configuration space. I. General theory, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 5 (2002), no. 2, 201-233. MathSciNet CrossRef
- L. D. Lemle, Existence and uniqueness for $C_ 0$-semigroups on the dual of a Banach space, Carpathian J. Math. 26 (2010), no. 1, 67-76. MathSciNet
- A. Lenard, Correlation functions and the uniqueness of the state in classical statistical mechanics, Comm. Math. Phys. 30 (1973), 35-44. MathSciNet
- A. Lenard, States of classical statistical mechanical systems of infinitely many particles. II. Characterization of correlation measures, Arch. Rational Mech. Anal. 59 (1975), no. 3, 241-256. MathSciNet
- A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. MathSciNet CrossRef
- C. Preston, Spatial birth-and-death processes, Bull. Inst. Internat. Statist. 46 (1975), no. 2, 371-391. MathSciNet
- D. Steinsaltz, S. N. Evans, and K. W. Wachter, A generalized model of mutation-selection balance with applications to aging, Adv. in Appl. Math. 35 (2005), no. 1, 16-33. MathSciNet CrossRef
- H. R. Thieme and J. Voigt, Stochastic semigroups: their construction by perturbation and approximation, Positivity IV---theory and applications, Tech. Univ. Dresden, Dresden, 2006, pp. 135-146. MathSciNet
- L. Wu and Y. Zhang, Existence and uniqueness of $C_ 0$-semigroup in $L^ \infty$: a new topological approach, C. R. Math. Acad. Sci. Paris 334 (2002), no. 8, 699-704. MathSciNet CrossRef
- L. Wu and Y. Zhang, A new topological approach to the $L^ \infty$-uniqueness of operators and the $L^ 1$-uniqueness of Fokker-Planck equations, J. Funct. Anal. 241 (2006), no. 2, 557-610. MathSciNet CrossRef