In this paper, we consider various new inverse spectral problems (ISP) for metric graphs, using maximal eigen values of the adjacency matrix of the graph and its subgraphs as well as the corresponding eigen vectors or some of their components as spectral data. We give examples of spectral data that uniquely determine the metric on the graph. Effective algorithms for solving the considered ISP are given.
Key words: Inverse spectral problem, weighted graph, spanning tree, adjacency matrix, index of a graph, spectrum of a graph, nonnegative matrix.
Full Text
Article Information
Title
On new inverse spectral problems for weighted graphs
L. P. Nizhnik and V. I. Rabanovich, On new inverse spectral problems for weighted graphs, Methods Funct. Anal. Topology 23
(2017), no. 1, 66-75.
BibTex
@article {MFAT924,
AUTHOR = {Nizhnik, L. P. and Rabanovich, V. I.},
TITLE = {On new inverse spectral problems for weighted graphs},
JOURNAL = {Methods Funct. Anal. Topology},
FJOURNAL = {Methods of Functional Analysis and Topology},
VOLUME = {23},
YEAR = {2017},
NUMBER = {1},
PAGES = {66-75},
ISSN = {1029-3531},
MRNUMBER = {MR3632390},
ZBLNUMBER = {06810669},
URL = {http://mfat.imath.kiev.ua/article/?id=924},
}
References
M. T. Chu, Inverse eigenvalue problems, SIAM Rev. 40 (1998), no. 1, 1-39. MathSciNetCrossRef
M. T. Chu and G. H. Golub, Structured inverse eigenvalue problems, Acta Numer. 11 (2002), 1-71. MathSciNetCrossRef
S. Friedland, Inverse eigenvalue problems, Linear Algebra and Appl. 17 (1977), no. 1, 15-51. MathSciNet
F. P. Gantmacher and M. G. Krein, Oscillation matrices and kernels and small vibrations of mechanical systems, AMS Chelsea Publishing, Providence, RI, 2002. MathSciNetCrossRef
F. R. Gantmakher, Teoriya matrits (Theory of matrices), Fizmatlit, Moscow, 2004 (Russian).
H. Hochstadt, On the construction of a Jacobi matrix from mixed given data, Linear Algebra Appl. 28 (1979), 113-115. MathSciNetCrossRef
L. Hogben (ed.), Handbook of linear algebra, CRC Press, Boca Raton, FL, 2014. MathSciNet