Open Access

Tannaka-Krein reconstruction for coactions of finite quantum groupoids


Abstract

We study coactions of finite quantum groupoids on unital $C^*$-algebras and obtain a Tannaka-Krein reconstruction theorem for them.

Key words: Coactions and corepresentations of quantum groupoids, $C^*$-categories, reconstruction theorem.


Full Text





Article Information

TitleTannaka-Krein reconstruction for coactions of finite quantum groupoids
SourceMethods Funct. Anal. Topology, Vol. 23 (2017), no. 1, 76-107
MilestonesReceived 13/09/2016; Revised 06/11/2016
CopyrightThe Author(s) 2017 (CC BY-SA)

Authors Information

Leonid Vainerman
Laboratoire Nicolas Oresme, Universite de Caen

Jean-Michel Vallin
Laboratoire Mapmo, Universite d’Orleans


Google Scholar Metrics

Citing articles in Google Scholar
Similar articles in Google Scholar

Export article

Save to Mendeley



Citation Example

Leonid Vainerman and Jean-Michel Vallin, Tannaka-Krein reconstruction for coactions of finite quantum groupoids, Methods Funct. Anal. Topology 23 (2017), no. 1, 76-107.


BibTex

@article {MFAT949,
    AUTHOR = {Vainerman, Leonid and Vallin, Jean-Michel},
     TITLE = {Tannaka-Krein reconstruction for coactions of finite quantum groupoids},
   JOURNAL = {Methods Funct. Anal. Topology},
  FJOURNAL = {Methods of Functional Analysis and Topology},
    VOLUME = {23},
      YEAR = {2017},
    NUMBER = {1},
     PAGES = {76-107},
      ISSN = {1029-3531},
       URL = {http://mfat.imath.kiev.ua/article/?id=949},
}


References

  1. Saad Baaj and Georges Skandalis, $C^ \ast$-alg\`ebres de Hopf et theorie de Kasparov equivariante, $K$-Theory 2 (1989), no. 6, 683-721.  MathSciNet CrossRef
  2. Florin P. Boca, Ergodic actions of compact matrix pseudogroups on $C^ *$-algebras, Ast\erisque (1995), no. 232, 93-109.  MathSciNet
  3. Gabriella Bohm, Florian Nill, and Kornel Szlachanyi, Weak Hopf algebras. I. Integral theory and $C^ *$-structure, J. Algebra 221 (1999), no. 2, 385-438.  MathSciNet CrossRef
  4. Gabriella Bohm and Kornel Szlachanyi, Weak $C^ \ast$-Hopf algebras: the coassociative symmetry of non-integral dimensions, Quantum groups and quantum spaces, Banach Center Publ., vol. 40, 1997, pp. 9-19.  MathSciNet
  5. Gabriella Bohm and Kornel Szlachanyi, Weak Hopf algebras. II. Representation theory, dimensions, and the Markov trace, J. Algebra 233 (2000), no. 1, 156-212.  MathSciNet CrossRef
  6. Kenny De Commer and Makoto Yamashita, Tannaka-Krei n duality for compact quantum homogeneous spaces. I. General theory, Theory Appl. Categ. 28 (2013), no. 31, 1099-1138.  MathSciNet
  7. Kenny De Commer and Makoto Yamashita, Tannaka-Krei n duality for compact quantum homogeneous spaces II. Classification of quantum homogeneous spaces for quantum $\rm SU(2)$, J. Reine Angew. Math. 708 (2015), 143-171.  MathSciNet CrossRef
  8. Michel Enock, Measured quantum groupoids in action, M\em. Soc. Math. Fr. 114 (2008), 1-150.  MathSciNet
  9. Pavel Etingof, Shlomo Gelaki, Dmitri Nikshych, and Victor Ostrik, Tensor categories, Mathematical Surveys and Monographs, vol. 205, American Mathematical Society, Providence, RI, 2015.  MathSciNet CrossRef
  10. T. Hayashi, A canonical Tannaka duality for finite seimisimple tensor categories, 1999,  arXiv:arXiv:math/9904073
  11. M. Krein, A principle of duality for bicompact groups and quadratic block algebras, Doklady Akad. Nauk SSSR (N.S.) 69 (1949), 725-728.  MathSciNet
  12. E. C. Lance, Hilbert $C^ *$-modules. A toolkit for operator algebraists, London Mathematical Society Lecture Note Series, vol. 210, Cambridge University Press, Cambridge, 1995.  MathSciNet CrossRef
  13. Saunders Mac Lane, Categories for the working mathematician, Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998.  MathSciNet
  14. Camille Mevel, Exemples et applications des groupoides quantiques finis, Ph.D. thesis, Universit\'e de Caen, 2010.
  15. S. Neshveyev and M. Yamashita, Categorical duality for Yetter-Drinfeld algebras, 2013,  arXiv:1310.4407v4
  16. Sergey Neshveyev, Duality theory for nonergodic actions, Munster J. Math. 7 (2014), no. 2, 413-437.  MathSciNet
  17. Sergey Neshveyev and Lars Tuset, Hopf algebra equivariant cyclic cohomology, $K$-theory and index formulas, $K$-Theory 31 (2004), no. 4, 357-378.  MathSciNet CrossRef
  18. Sergey Neshveyev and Lars Tuset, Compact quantum groups and their representation categories, Cours Sp\'ecialis\'es, vol. 20, Soci\'et\'e Math\'ematique de France, Paris, 2013.  MathSciNet
  19. Dmitri Nikshych, Vladimir Turaev, and Leonid Vainerman, Invariants of knots and 3-manifolds from quantum groupoids, Topology Appl. 127 (2003), no. 1-2, 91-123.  MathSciNet CrossRef
  20. Dmitri Nikshych and Leonid Vainerman, Algebraic versions of a finite-dimensional quantum groupoid, Lecture Notes in Pure and Appl. Math., vol. 209, 2000, pp. 189-220.  MathSciNet
  21. Dmitri Nikshych and Leonid Vainerman, A characterization of depth 2 subfactors of $\rm II_ 1$ factors, J. Funct. Anal. 171 (2000), no. 2, 278-307.  MathSciNet CrossRef
  22. Dmitri Nikshych and Leonid Vainerman, A Galois correspondence for $\rm II_ 1$ factors and quantum groupoids, J. Funct. Anal. 178 (2000), no. 1, 113-142.  MathSciNet CrossRef
  23. Dmitri Nikshych and Leonid Vainerman, Finite quantum groupoids and their applications, Math. Sci. Res. Inst. Publ., vol. 43, Cambridge Univ. Press, Cambridge, 2002, pp. 211-262.  MathSciNet
  24. Florian Nill, Axioms for weak bialgebras, 1998,  arXiv:math/9805104
  25. Gert K. Pedersen, $C^\ast $-algebras and their automorphism groups, London Mathematical Society Monographs, vol. 14, Academic Press, Inc., London-New York, 1979.  MathSciNet
  26. Hendryk Pfeiffer, Finitely semisimple spherical categories and modular categories are self-dual, Adv. Math. 221 (2009), no. 5, 1608-1652.  MathSciNet CrossRef
  27. Kornel Szlachanyi, Finite quantum groupoids and inclusions of finite type, Mathematical physics in mathematics and physics (Siena, 2000), Fields Inst. Commun., vol. 30, Amer. Math. Soc., Providence, RI, 2001, pp. 393-407.  MathSciNet
  28. Daisuke Tambara and Shigeru Yamagami, Tensor categories with fusion rules of self-duality for finite abelian groups, J. Algebra 209 (1998), no. 2, 692-707.  MathSciNet CrossRef
  29. T Tannaka, uber den dualitatssatz der nichtkommutativen topologischen gruppen, Tohoku Math. J. 45 (1938), no. 1, 1-12.
  30. Leonid Vainerman, Tannaka-Krein duality for compact quantum group coactions (survey), Methods Funct. Anal. Topology 21 (2015), no. 3, 282-298.  MathSciNet
  31. Leonid Vainerman and Jean-Michel Vallin, On $\Bbb Z/2\Bbb Z$-extensions of pointed fusion categories, Banach Center Publ., vol. 98, 2012, pp. 343-366.  MathSciNet CrossRef
  32. Jean-Michel Vallin, Groupo\i des quantiques finis, J. Algebra 239 (2001), no. 1, 215-261.  MathSciNet CrossRef
  33. Jean-Michel Vallin, Multiplicative partial isometries and finite quantum groupoids, Locally compact quantum groups and groupoids, IRMA Lect. Math. Theor. Phys., vol. 2, 2003, pp. 189-227.  MathSciNet
  34. Jean-Michel Vallin, Actions and coactions of finite quantum groupoids on von Neumann algebras, extensions of the matched pair procedure, J. Algebra 314 (2007), no. 2, 789-816.  MathSciNet CrossRef
  35. S. L. Woronowicz, Tannaka-Krei n duality for compact matrix pseudogroups. Twisted $\rm SU(N)$ groups, Invent. Math. 93 (1988), no. 1, 35-76.  MathSciNet CrossRef


All Issues