Open Access

Linear maps preserving the index of operators


Let $\mathsf{H}$ be an infinite-dimensional separable complex Hilbert space and $\mathcal{B}(\mathsf{H})$ the algebra of all bounded linear operators on $\mathsf{H}.$ In this paper, we prove that if a surjective linear map $ \phi : \mathcal{B}(\mathsf{H}) \longrightarrow \mathcal{B}(\mathsf{H})$ preserves the index of operators, then $\phi$ preserves compact operators in both directions and the induced map $ \varphi : \mathcal{C}( \mathsf{H}) \longrightarrow \mathcal{C}(\mathsf{H}),$ determined by $\varphi(\pi(T)) = \pi( \phi(T)) $ for all $T \in \mathcal{B}(\mathsf{H}),$ is a continuous automorphism multiplied by an invertible element in $\mathcal{C}( \mathsf{H}).$

Key words: Linear preserver problems, index of operator, semi-Fredholm operator.

Full Text

Article Information

TitleLinear maps preserving the index of operators
SourceMethods Funct. Anal. Topology, Vol. 23 (2017), no. 3, 277-284
MathSciNet   MR3707522
Milestones  Received 20/12/2016; Revised 30/03/2017
CopyrightThe Author(s) 2017 (CC BY-SA)

Authors Information

Sayda Ragoubi
Universite de Monastir, Institut pr ´eparatoire aux´ etudes d’ing´ enieurs de Monastir, Avenue Ibn Eljazzar, 5019 Monastir, Tunisia 

Export article

Save to Mendeley

Citation Example

Sayda Ragoubi, Linear maps preserving the index of operators, Methods Funct. Anal. Topology 23 (2017), no. 3, 277-284.


@article {MFAT989,
    AUTHOR = {Ragoubi, Sayda},
     TITLE = {Linear maps preserving the index of operators},
   JOURNAL = {Methods Funct. Anal. Topology},
  FJOURNAL = {Methods of Functional Analysis and Topology},
    VOLUME = {23},
      YEAR = {2017},
    NUMBER = {3},
     PAGES = {277-284},
      ISSN = {1029-3531},
  MRNUMBER = {MR3707522},
       URL = {},


Coming Soon.

All Issues