Abstract
In this present paper, we establish Cantor's intersection like
theorem in a locally convex topological vector spaces. Some fixed
point and common fixed point theorems are proved for Reich and
Caccioppoli type contractive mappings in such a locally convex
topological vector space. Also in this setting we prove a fixed
point theorem for some mapping which is the uniform limit of a
sequence of Reich type contractive mappings therein.
Встановлена теорема, подібна теоремі Кантора про перетин, у
випадку локально опуклих векторних просторів. Для стискуючих
відображень типу Райха і Каччіополі відповідних просторів доведені
теореми про нерухому точку та спільну нерухому точку. Також у цій
постановці доведена теорема про нерухому точку для відображення, яке
є рівномірною границею послідовності стискуючих відображень типу
Райха.
Key words: Locally convex topological vector space, Cantor's intersection theorem, fixed point.
Full Text
Article Information
Title | Cantor's intersection theorem and some generalized fixed point theorems over a locally convex topological vector space |
Source | Methods Funct. Anal. Topology, Vol. 26 (2020), no. 3, 262-271 |
DOI | 10.31392/MFAT-npu26_3.2020.07 |
MathSciNet |
MR4165157 |
Milestones | Received 14/06/2020; Revised 02/07/2020 |
Copyright | The Author(s) 2020 (CC BY-SA) |
Authors Information
A. P. Baisnab
PG Section, Department of Mathematics, Lady Brabourne College, P1/2 Suhrawardy Avenue, Kolkata700017, West Bengal, India.
K. Roy
Department of Mathematics, The University of Burdwan, Purba Bardhaman-713104, West Bengal, India
M. Saha
Department of Mathematics, The University of Burdwan, Purba Bardhaman-713104, West Bengal, India
Citation Example
A. P. Baisnab, K. Roy, and M. Saha, Cantor's intersection theorem and some generalized fixed point theorems over a locally convex topological vector space, Methods Funct. Anal. Topology 26
(2020), no. 3, 262-271.
BibTex
@article {MFAT1398,
AUTHOR = {A. P. Baisnab and K. Roy and M. Saha},
TITLE = {Cantor's intersection theorem and some generalized fixed point theorems over a locally convex topological vector space},
JOURNAL = {Methods Funct. Anal. Topology},
FJOURNAL = {Methods of Functional Analysis and Topology},
VOLUME = {26},
YEAR = {2020},
NUMBER = {3},
PAGES = {262-271},
ISSN = {1029-3531},
MRNUMBER = {MR4165157},
DOI = {10.31392/MFAT-npu26_3.2020.07},
URL = {http://mfat.imath.kiev.ua/article/?id=1398},
}