Abstract
The purpose of this paper is to study the relationship between
spectral properties of a bounded operator and its left and right
generalized Drazin inverses. The description of the associated
spectral projections allows us to find some new representation
results and certain generalizations on left and right generalized
Drazin invertible bounded operators.
Метою статті є дослідження співвідношення між спектральними
властивостями обмеженого оператора і його лівого та правого
узагальненого оберненого в сенсі Дразіна. Опис відповідних
спектральних проєкторів дозволяє знайти нові теореми представлення,
а також певні узагальнення класу операторів, оборотних у сенсі
Дразіна.
Full Text
Article Information
Title | A New Representation of Left and Right Generalized Drazin Invertible Operators |
Source | Methods Funct. Anal. Topology, Vol. 27 (2021), no. 1, 37-43 |
DOI | 10.31392/MFAT-npu26_1.2021.06 |
MathSciNet |
MR4252997 |
Milestones | Received 09/04/2020; Revised 09/02/2021 |
Copyright | The Author(s) 2021 (CC BY-SA) |
Authors Information
Sofiane Messirdi
Department of Mathematics, University of Oran 1 Ahmed Benbella, Algeria. Laboratory of Fundamental and Applicable Mathematics of Oran (LMFAO), Algeria
Sanaa Messirdi
High Industrial Institute for Social Promotion ISIPS-Hainaut, Belgium
Bendjedid Sadli
Department of Mathematics, University Tahar Moulay of Saida, B.P. 138 Saida, Algeria
Bekkai Messirdi
High School of Electrical and Energetic Engineering-Oran, Algeria. Laboratory of Fundamental and Applicable Mathematics of Oran (LMFAO) University of Oran1, Ahmed Benbella, Algeria
Citation Example
Sofiane Messirdi, Sanaa Messirdi, Bendjedid Sadli, and Bekkai Messirdi, A New Representation of Left and Right Generalized Drazin Invertible Operators, Methods Funct. Anal. Topology 27
(2021), no. 1, 37-43.
BibTex
@article {MFAT1505,
AUTHOR = {Sofiane Messirdi and Sanaa Messirdi and Bendjedid Sadli and Bekkai Messirdi},
TITLE = {A New Representation of Left and Right Generalized Drazin Invertible Operators},
JOURNAL = {Methods Funct. Anal. Topology},
FJOURNAL = {Methods of Functional Analysis and Topology},
VOLUME = {27},
YEAR = {2021},
NUMBER = {1},
PAGES = {37-43},
ISSN = {1029-3531},
MRNUMBER = {MR4252997},
DOI = {10.31392/MFAT-npu26_1.2021.06},
URL = {http://mfat.imath.kiev.ua/article/?id=1505},
}