Open Access

Donoho-Stark Theorem For The Quadratic-Phase Fourier Integral Operators


Abstract

In this paper, we obtain a generalization of the Donoho-Stark uncertainty principle associated with the Quadratic-Phase Fourier integral operators which is defined as a generalization of several integral transforms whose kernel has an exponential form.

У цій роботі ми отримуємо узагальнення принципу невизначеності Доного-Старка, пов'язане з квадратично-фазовим інтегральним оператором Фур'є, який визначається як узагальнення кількох інтегральних перетворень з ядрами\break експоненціальної форми.

Key words: Uncertainty principle, Donoho-Stark Theorem, The Quadratic-Phase Fourier transform.


Full Text






Article Information

TitleDonoho-Stark Theorem For The Quadratic-Phase Fourier Integral Operators
SourceMethods Funct. Anal. Topology, Vol. 27 (2021), no. 4, 335-339
DOI10.31392/MFAT-npu26_4.2021.06
MathSciNet   MR4425712
Milestones  Received 30/12/2020; Revised 02/04/2021
CopyrightThe Author(s) 2021 (CC BY-SA)

Authors Information

El Mehdi Berkak
Laboratory: Topology, Algebra, Geometry and Discrete Mathematics. Department of Mathematics and Informatics, Faculty of Sciences A¨ın Chock, University of Hassan II, B.P 5366 Maarif, Casablanca, Morocco

El Mehdi Loualid
Laboratory of Engineering Sciences for Energy, National School of Applied Sciences of El Jadida, University Of Chouaib Doukkali, El Jadida, Morocco

Radouan Daher
Laboratory: Topology, Algebra, Geometry and Discrete Mathematics. Department of Mathematics and Informatics, Faculty of Sciences A¨ın Chock, University of Hassan II, B.P 5366 Maarif, Casablanca, Morocco


Export article

Save to Mendeley



Citation Example

El Mehdi Berkak, El Mehdi Loualid, and Radouan Daher, Donoho-Stark Theorem For The Quadratic-Phase Fourier Integral Operators, Methods Funct. Anal. Topology 27 (2021), no. 4, 335-339.


BibTex

@article {MFAT1696,
    AUTHOR = {El Mehdi Berkak and El Mehdi Loualid and Radouan Daher},
     TITLE = {Donoho-Stark Theorem For The Quadratic-Phase Fourier Integral Operators},
   JOURNAL = {Methods Funct. Anal. Topology},
  FJOURNAL = {Methods of Functional Analysis and Topology},
    VOLUME = {27},
      YEAR = {2021},
    NUMBER = {4},
     PAGES = {335-339},
      ISSN = {1029-3531},
  MRNUMBER = {MR4425712},
       DOI = {10.31392/MFAT-npu26_4.2021.06},
       URL = {http://mfat.imath.kiev.ua/article/?id=1696},
}


References

Coming Soon.

All Issues