Abstract
In this paper, we obtain a generalization of the Donoho-Stark
uncertainty principle associated with the Quadratic-Phase Fourier
integral operators which is defined as a generalization of several
integral transforms whose kernel has an exponential form.
У цій роботі ми отримуємо узагальнення принципу
невизначеності Доного-Старка, пов'язане з квадратично-фазовим
інтегральним оператором Фур'є, який визначається як узагальнення
кількох інтегральних перетворень з ядрами\break експоненціальної
форми.
Key words: Uncertainty principle, Donoho-Stark Theorem, The Quadratic-Phase Fourier transform.
Full Text
Article Information
Title | Donoho-Stark Theorem For The Quadratic-Phase Fourier Integral Operators |
Source | Methods Funct. Anal. Topology, Vol. 27 (2021), no. 4, 335-339 |
DOI | 10.31392/MFAT-npu26_4.2021.06 |
MathSciNet |
MR4425712 |
Milestones | Received 30/12/2020; Revised 02/04/2021 |
Copyright | The Author(s) 2021 (CC BY-SA) |
Authors Information
El Mehdi Berkak
Laboratory: Topology, Algebra, Geometry and Discrete Mathematics. Department of Mathematics and Informatics, Faculty of Sciences A¨ın Chock, University of Hassan II, B.P 5366 Maarif, Casablanca, Morocco
El Mehdi Loualid
Laboratory of Engineering Sciences for Energy, National School of Applied Sciences of El Jadida, University Of Chouaib Doukkali, El Jadida, Morocco
Radouan Daher
Laboratory: Topology, Algebra, Geometry and Discrete Mathematics. Department of Mathematics and Informatics, Faculty of Sciences A¨ın Chock, University of Hassan II, B.P 5366 Maarif, Casablanca, Morocco
Citation Example
El Mehdi Berkak, El Mehdi Loualid, and Radouan Daher, Donoho-Stark Theorem For The Quadratic-Phase Fourier Integral Operators, Methods Funct. Anal. Topology 27
(2021), no. 4, 335-339.
BibTex
@article {MFAT1696,
AUTHOR = {El Mehdi Berkak and El Mehdi Loualid and Radouan Daher},
TITLE = {Donoho-Stark Theorem For The Quadratic-Phase Fourier Integral Operators},
JOURNAL = {Methods Funct. Anal. Topology},
FJOURNAL = {Methods of Functional Analysis and Topology},
VOLUME = {27},
YEAR = {2021},
NUMBER = {4},
PAGES = {335-339},
ISSN = {1029-3531},
MRNUMBER = {MR4425712},
DOI = {10.31392/MFAT-npu26_4.2021.06},
URL = {http://mfat.imath.kiev.ua/article/?id=1696},
}