Open Access

On Location of the Spectrum of an Operator with a Hilbert-Schmidt Resolvent in the Left Half-Plane


Abstract

Let $\mathcal{H}$ be a separable Hilbert space, and $A$ be a linear operator on $\mathcal{H}$ with a Hilbert-Schmidt resolvent and a bounded imaginary Hermitian component. Assuming that the spectrum of $A$ lies in the open left half-plane we suggest the conditions that provide the location of the spectrum of a bounded perturbation of $A$ in the open left half-plane.

Нехай $\mathcal{H}$ - сепарабельний гільбертовий простір, а $A$ - лінійний оператор на $\mathcal{H}$ з резольвентою Гільберта-Шмідта та обмеженою уявниою компонентою. Припускаючи, що спектр $A$ лежить у відкритої лівої півплощині, запропоновано пропонуємо умови, які забезпечують розташування спектру обмеженого збурення $A$ в відкритій лівій півплощині.

Key words: Hilbert space, unbounded operators, spectrum perturbation.


Full Text






Article Information

TitleOn Location of the Spectrum of an Operator with a Hilbert-Schmidt Resolvent in the Left Half-Plane
SourceMethods Funct. Anal. Topology, Vol. 27 (2021), no. 4, 340-347
DOI10.31392/MFAT-npu26_4.2021.07
MathSciNet   MR4425713
Milestones  Received 06/06/2021; Revised 27/08/2021
CopyrightThe Author(s) 2021 (CC BY-SA)

Authors Information

Michael Gil'
Department of Mathematics, Ben Gurion University of Beer Sheva, 84105 Israel


Export article

Save to Mendeley



Citation Example

Michael Gil', On Location of the Spectrum of an Operator with a Hilbert-Schmidt Resolvent in the Left Half-Plane, Methods Funct. Anal. Topology 27 (2021), no. 4, 340-347.


BibTex

@article {MFAT1697,
    AUTHOR = {Michael Gil'},
     TITLE = {On Location  of the  Spectrum of an Operator with a Hilbert-Schmidt Resolvent in  the Left   Half-Plane},
   JOURNAL = {Methods Funct. Anal. Topology},
  FJOURNAL = {Methods of Functional Analysis and Topology},
    VOLUME = {27},
      YEAR = {2021},
    NUMBER = {4},
     PAGES = {340-347},
      ISSN = {1029-3531},
  MRNUMBER = {MR4425713},
       DOI = {10.31392/MFAT-npu26_4.2021.07},
       URL = {http://mfat.imath.kiev.ua/article/?id=1697},
}


References

Coming Soon.

All Issues