Abstract
For a $C^*$-algebra generated by a finite family of isometries
$s_j$, $j=1,\dots,d$, satisfying the $q_{ij}$-commutation relations
\[
s_j^* s_j = I, \quad s_j^* s_k = q_{ij}s_ks_j^*, \qquad q_{ij} = \bar q_{ji}, |q_{ij}|<1, \ 1\le i \ne j \le d,
\]
we construct an infinite family of unitarily non-equivalent
irreducible representations. These representations are deformations
of a corresponding class of representations of the Cuntz algebra
$\mathcal O_d$.
Для $C^*$-алгебри, породженої скінченною сім’єю ізометрій
$s_j$, $j=1,\dots,d$, що задовольняє $q_{ij}$-комутаційним
співвідношенням
\[
s_j^* s_j = I, \quad s_j^* s_k = q_{ij}s_ks_j^*, \qquad q_{ij} = \bar q_{ji}, |q_{ij}|<1, \ 1\le i \ne j \le d,
\]
ми будуємо нескінченну сім'ю унітарно нееквівалентних незвідних
представлень. Ці представлення є деформаціями відповідного класу
представлень алгебри Кунца $\mathcal O_d$.
Key words: Cuntz-Toeplitz algebra, $q$-deformation, isometries.
Full Text
Article Information
Title | A class of representations of $C^*$-algebra generated by $q_{ij}$-commuting isometries |
Source | Methods Funct. Anal. Topology, Vol. 28 (2022), no. 1, 89-94 |
MathSciNet |
MR4459186 |
Milestones | Received 26/11/2021; Revised 05/12/2021 |
Copyright | The Author(s) 2022 (CC BY-SA) |
Authors Information
Olha Ostrovska
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
Vasyl Ostrovskyi
Institute of Mathematics, NAS of Ukraine
Danylo Proskurin
Kyiv National Taras Shevchenko University
Yurii Samoilenko
Institute of Mathematics, NAS of Ukraine
Citation Example
Olha Ostrovska, Vasyl Ostrovskyi, Danylo Proskurin, and Yurii Samoilenko, A class of representations of $C^*$-algebra generated by $q_{ij}$-commuting isometries, Methods Funct. Anal. Topology 28
(2022), no. 1, 89-94.
BibTex
@article {MFAT1728,
AUTHOR = {Olha Ostrovska and Vasyl Ostrovskyi and Danylo Proskurin and Yurii Samoilenko},
TITLE = {A class of representations of $C^*$-algebra generated by $q_{ij}$-commuting isometries},
JOURNAL = {Methods Funct. Anal. Topology},
FJOURNAL = {Methods of Functional Analysis and Topology},
VOLUME = {28},
YEAR = {2022},
NUMBER = {1},
PAGES = {89-94},
ISSN = {1029-3531},
MRNUMBER = {MR4459186},
URL = {http://mfat.imath.kiev.ua/article/?id=1728},
}