Abstract
We give a characterization of the essential spectrum for $(A,B)$,
where $A$ is a closed linear operator and $B$ is a bounded linear
operator, by means of Fredholm operators on a Banach space of
countable type over $\mathbb{Q}_{p}.$
За допомогою фредгольмових операторів на банаховому
просторі зліченого типу над $\mathbb{Q}_{p}$ надано характеристику
істотного спектра для $(A,B)$, де $A$ - замкнеґ-ний лінійний
оператор, а $B$ - обмежений.
Key words: Non-archimedean Banach spaces, spectrum, essential spectrum.
Full Text
Article Information
Title | A note on pencil of bounded linear operators on non-archimedean Banach spaces |
Source | Methods Funct. Anal. Topology, Vol. 28 (2022), no. 2, 105-109 |
DOI | 10.31392/MFAT-npu26_2.2022.02 |
MathSciNet |
MR4548147 |
Milestones | Received 18/01/2022; Revised 10/02/2022 |
Copyright | The Author(s) 2022 (CC BY-SA) |
Authors Information
Aziz Blali
Department of Mathematics, University of Sidi Mohamed Ben Abdellah, ENS, Fez, Morocco
Abdelkhalek El Amrani
Department of Mathematics and Computer Science, University of Sidi Mohamed Ben Abdellah, Faculty of Sciences Dhar El Mahraz, Fez, Morocco
Jawad Ettayb
Department of Mathematics and Computer Science, University of Sidi Mohamed Ben Abdellah, Faculty of Sciences Dhar El Mahraz, Fez, Morocco
Citation Example
Aziz Blali, Abdelkhalek El Amrani, and Jawad Ettayb, A note on pencil of bounded linear operators on non-archimedean Banach spaces, Methods Funct. Anal. Topology 28
(2022), no. 2, 105-109.
BibTex
@article {MFAT1785,
AUTHOR = {Aziz Blali and Abdelkhalek El Amrani and Jawad Ettayb},
TITLE = {A note on pencil of bounded linear operators on non-archimedean Banach spaces},
JOURNAL = {Methods Funct. Anal. Topology},
FJOURNAL = {Methods of Functional Analysis and Topology},
VOLUME = {28},
YEAR = {2022},
NUMBER = {2},
PAGES = {105-109},
ISSN = {1029-3531},
MRNUMBER = {MR4548147},
DOI = {10.31392/MFAT-npu26_2.2022.02},
URL = {http://mfat.imath.kiev.ua/article/?id=1785},
}