Open Access

A note on pencil of bounded linear operators on non-archimedean Banach spaces


Abstract

We give a characterization of the essential spectrum for $(A,B)$, where $A$ is a closed linear operator and $B$ is a bounded linear operator, by means of Fredholm operators on a Banach space of countable type over $\mathbb{Q}_{p}.$

За допомогою фредгольмових операторів на банаховому просторі зліченого типу над $\mathbb{Q}_{p}$ надано характеристику істотного спектра для $(A,B)$, де $A$ - замкнеґ-ний лінійний оператор, а $B$ - обмежений.

Key words: Non-archimedean Banach spaces, spectrum, essential spectrum.


Full Text






Article Information

TitleA note on pencil of bounded linear operators on non-archimedean Banach spaces
SourceMethods Funct. Anal. Topology, Vol. 28 (2022), no. 2, 105-109
DOI10.31392/MFAT-npu26_2.2022.02
MathSciNet   MR4548147
Milestones  Received 18/01/2022; Revised 10/02/2022
CopyrightThe Author(s) 2022 (CC BY-SA)

Authors Information

Aziz Blali
Department of Mathematics, University of Sidi Mohamed Ben Abdellah, ENS, Fez, Morocco

Abdelkhalek El Amrani
Department of Mathematics and Computer Science, University of Sidi Mohamed Ben Abdellah, Faculty of Sciences Dhar El Mahraz, Fez, Morocco

Jawad Ettayb
Department of Mathematics and Computer Science, University of Sidi Mohamed Ben Abdellah, Faculty of Sciences Dhar El Mahraz, Fez, Morocco

 


Export article

Save to Mendeley



Citation Example

Aziz Blali, Abdelkhalek El Amrani, and Jawad Ettayb, A note on pencil of bounded linear operators on non-archimedean Banach spaces, Methods Funct. Anal. Topology 28 (2022), no. 2, 105-109.


BibTex

@article {MFAT1785,
    AUTHOR = {Aziz Blali and Abdelkhalek El Amrani and Jawad Ettayb},
     TITLE = {A note on pencil of bounded linear operators on non-archimedean Banach spaces},
   JOURNAL = {Methods Funct. Anal. Topology},
  FJOURNAL = {Methods of Functional Analysis and Topology},
    VOLUME = {28},
      YEAR = {2022},
    NUMBER = {2},
     PAGES = {105-109},
      ISSN = {1029-3531},
  MRNUMBER = {MR4548147},
       DOI = {10.31392/MFAT-npu26_2.2022.02},
       URL = {http://mfat.imath.kiev.ua/article/?id=1785},
}


References

Coming Soon.

All Issues