Abstract
In this paper we investigate a class of initial boundary
value problems for a class of nonlinear dispersive
equations of odd orders. We prove existence of at least
one solution and existence of at least one nonnegative
solution. Our method is based on a use of a fixed
point theory for the sum of two operators.
У статті досліджено клас початкових граничних
задач для класу нелінійних дисперсійних рівняння непарних
порядків. Доведено існування принаймні одного розв’язоку і
існування хоча б одного невід’ємного розв'язку. Наш метод
базується на використанні теорії про нерухомі точки для
суми двох операторів.
Key words: High-order dispersive equations, global solutions, initial boundary value problems, fixed point, Sum of operators.
Full Text
Article Information
Title | Existence of classical solutions for initial boundary value problems for nonlinear dispersive equations of odd-orders |
Source | Methods Funct. Anal. Topology, Vol. 28 (2022), no. 3, 228-241 |
DOI | 10.31392/MFAT-npu26_3.2022.03 |
MathSciNet |
MR4550660 |
Milestones | Received 30/03/2022; Revised 06/08/2022 |
Copyright | The Author(s) 2022 (CC BY-SA) |
Authors Information
Svetlin Georgiev Georgiev
Department of Differential Equations, Faculty of Mathematics and Informatics, University of Sofia, Sofia, Bulgaria
Arezki Kheloufi
Laboratory of Applied Mathematics, Bejaia University, 06000 Bejaia, Algeria
Karima Mebarki
Laboratory of Applied Mathematics, Faculty of Exact Sciences, Bejaia University, 06000 Bejaia, Algeria
Citation Example
Svetlin Georgiev Georgiev, Arezki Kheloufi, and Karima Mebarki, Existence of classical solutions for initial boundary value problems for nonlinear dispersive equations of odd-orders, Methods Funct. Anal. Topology 28
(2022), no. 3, 228-241.
BibTex
@article {MFAT1796,
AUTHOR = {Svetlin Georgiev Georgiev and Arezki Kheloufi and Karima Mebarki},
TITLE = {Existence of classical solutions for initial boundary value problems for nonlinear dispersive equations of odd-orders},
JOURNAL = {Methods Funct. Anal. Topology},
FJOURNAL = {Methods of Functional Analysis and Topology},
VOLUME = {28},
YEAR = {2022},
NUMBER = {3},
PAGES = {228-241},
ISSN = {1029-3531},
MRNUMBER = {MR4550660},
DOI = {10.31392/MFAT-npu26_3.2022.03},
URL = {http://mfat.imath.kiev.ua/article/?id=1796},
}