Abstract
We present solutions to some boundary value and initial-boundary value problems for the "wave" equation with the infinite dimensional L\'evy Laplacian $\Delta _L$ $$\frac{\partial^2 U(t,x)}{\partial t^2}=\Delta_LU(t,x)$$ in the Shilov class of functions.
Key words: L´evy Laplacian, hyperbolic equations, wave equation, boundary problems, initial-boundary value problems.
Full Text
Article Information
Title | Boundary problems for the wave equation with the Lévy Laplacian in Shilov's class |
Source | Methods Funct. Anal. Topology, Vol. 16 (2010), no. 3, 197-202 |
MathSciNet |
MR2743587 |
Copyright | The Author(s) 2010 (CC BY-SA) |
Authors Information
S. Albeverio
Institut fur Angewandte Mathematik, Universitat Bonn, Wegelerstr.6, D-53115 Bonn; SFB 611, HCM, IZKS, Bonn, Germany; CERFIM, Locarno and USI, Switzerland
Ya. I. Belopolskaya
St. Petersburg State University for Architecture and Civil Engineering, 2-ja Krasnoarmejskaja 4, St. Petersburg, 190005, Russia
M. N. Feller
UkrNII RESURS, Kyiv, Ukraine
Citation Example
S. Albeverio, Ya. I. Belopolskaya, and M. N. Feller, Boundary problems for the wave equation with the Lévy Laplacian in Shilov's class, Methods Funct. Anal. Topology 16
(2010), no. 3, 197-202.
BibTex
@article {MFAT508,
AUTHOR = {Albeverio, S. and Belopolskaya, Ya. I. and Feller, M. N.},
TITLE = {Boundary problems for the wave equation with the Lévy Laplacian in Shilov's class},
JOURNAL = {Methods Funct. Anal. Topology},
FJOURNAL = {Methods of Functional Analysis and Topology},
VOLUME = {16},
YEAR = {2010},
NUMBER = {3},
PAGES = {197-202},
ISSN = {1029-3531},
MRNUMBER = {MR2743587},
URL = {http://mfat.imath.kiev.ua/article/?id=508},
}