Ya. I. Belopolskaya
orcid.org/0000-0002-8303-2571
Search this author in Google Scholar
Two-dimensional Helmholtz resonator with two close point-like windows: regularization for the Neumann case
A. G. Belolipetskaia, A. A. Boitsev, S. Fassari, I. Y. Popov, F. Rinaldi
MFAT 28 (2022), no. 2, 95-104
95-104
Explicitly solvable model for two-dimensional Helmholtz resonator
with two close point-like windows is constructed. The model is based
on the theory of self-adjoint extensions of symmetric
operators. Limiting procedure is studied for the case where the
distance between the windows tends to zero. A regularization is
suggested.
Побудовано явно розв'язувану модель для двовимірного
резонатора Гельмгольца з двома близькими точковими вікнами. Модель
базується на теорії самоспряжених розширень симетричних
операторів. Вивчено процедуру граничного переходу для випадку, коли
відстань між вікнами прямує до нуля, та запропоновано регуляризацію.
Boundary problems for the wave equation with the Lévy Laplacian in Shilov's class
S. Albeverio, Ya. I. Belopolskaya, M. N. Feller
MFAT 16 (2010), no. 3, 197-202
197-202
We present solutions to some boundary value and initial-boundary value problems for the "wave" equation with the infinite dimensional L\'evy Laplacian $\Delta _L$ $$\frac{\partial^2 U(t,x)}{\partial t^2}=\Delta_LU(t,x)$$ in the Shilov class of functions.
Boundary problems for fully nonlinear parabolic equations with Lévy Laplacian
S. Albeverio, Ya. Belopolskaya, M. Feller
MFAT 14 (2008), no. 1, 1-9
1-9
We suggest a method to solve boundary and initial-boundary value problems for a class of nonlinear parabolic equations with the infinite dimensional L'evy Laplacian $\Delta _L$ $$f\Bigl(U(t,x),\frac{\partial U(t,x)}{\partial t},\Delta_LU(t,x)\Bigl)=0$$ in fundamental domains of a Hilbert space.
Lévy-Dirichlet forms. II
S. Albeverio, Ya. Belopolskaya, M. Feller
MFAT 12 (2006), no. 4, 302-314
302-314
A Dirichlet form associated with the infinite dimensional symmetrized Levy-Laplace operator is constructed. It is shown that there exists a natural connection between this form and a Markov process. This correspondence is similar to that studied in a previous paper by the same authors for the non-symmetric Levy Laplacian.
Riquier problem for nonlinear elliptic equations with Lévy Laplacians
S. Albeverio, Ya. Belopolskaya, M. Feller
MFAT 11 (2005), no. 1, 1-9
1-9
Mathematical heritage of Yuri L'vovich Daletskii
Ya. I. Belopolʹskaya, Yu. M. Berezansky, Yu. V. Bogdansky, V. V. Lyubashenko, Yu. A. Mitropolsky
MFAT 5 (1999), no. 4, 1-8
1-8
Burgers equation on a Hilbert manifold and the motion of incompressible fluid
MFAT 5 (1999), no. 4, 15-27
15-27