Abstract
The aim of this paper to give some analogues of polarization formulas and the polarization inequality for $(p,q)$-polynomials between complex normed spaces. Obtained results are useful for investigation of real-differentiable mappings on complex spaces.
Full Text
Article Information
Title | Polarization formula for $(p,q)$-polynomials on a complex normed space |
Source | Methods Funct. Anal. Topology, Vol. 17 (2011), no. 1, 75-83 |
MathSciNet |
MR2815369 |
Copyright | The Author(s) 2011 (CC BY-SA) |
Authors Information
T. V. Vasylyshyn
Vasyl Stefanyk Precarpathian National University, 57 Shevchenka, Ivano-Frankivsk, 76000, Ukraine
A. V. Zagorodnyuk
Institute for Applied Problems of Mechanics and Mathematics, Ukrainian Academy of Sciences, 3-B Naukova, Lviv, 79060, Ukraine
Citation Example
T. V. Vasylyshyn and A. V. Zagorodnyuk, Polarization formula for $(p,q)$-polynomials on a complex normed space, Methods Funct. Anal. Topology 17
(2011), no. 1, 75-83.
BibTex
@article {MFAT577,
AUTHOR = {Vasylyshyn, T. V. and Zagorodnyuk, A. V.},
TITLE = {Polarization formula for $(p,q)$-polynomials on a complex normed space},
JOURNAL = {Methods Funct. Anal. Topology},
FJOURNAL = {Methods of Functional Analysis and Topology},
VOLUME = {17},
YEAR = {2011},
NUMBER = {1},
PAGES = {75-83},
ISSN = {1029-3531},
MRNUMBER = {MR2815369},
URL = {http://mfat.imath.kiev.ua/article/?id=577},
}