Abstract
We show that for a compact set $K\subset{\mathbb R}^n$ of nonzero $\alpha$-capacity, $C_\alpha(K)>0$, $\alpha\geq 1$, the subspace $\overset{\circ}{W}{^{\alpha,2}}(\Omega)$, $\Omega={\mathbb R}^n\setminus K$ in ${W}{^{\alpha,2}}({\mathbb R}^n)$ is dense in $W^{m,2}({\mathbb R}^n)$, $m\leq\alpha-1$, iff the $m$-capacity of $K$ is zero, $C_{m}(K)=0$.
Key words: Singular perturbations, rigged Hilbert spaces, capacity, Berezansky canonical isomorphisms, Sobolev spaces, dense subspaces.
Full Text
Article Information
Title | Nonzero capacity sets and dense subspaces in scales of Sobolev spaces |
Source | Methods Funct. Anal. Topology, Vol. 20 (2014), no. 3, 213-218 |
MathSciNet |
MR3242705 |
zbMATH |
1324.46045 |
Milestones | Received 18/02/2014 |
Copyright | The Author(s) 2014 (CC BY-SA) |
Authors Information
Mykola E. Dudkin
National Technical University of Ukraine (KPI), 37 Peremogy Av., Kyiv, 03056, Ukraine
Volodymyr D. Koshmanenko
Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereshchenkivs'ka, Kyiv, 01601, Ukraine 18/02/2014
Citation Example
Mykola E. Dudkin and Volodymyr D. Koshmanenko, Nonzero capacity sets and dense subspaces in scales of Sobolev spaces, Methods Funct. Anal. Topology 20
(2014), no. 3, 213-218.
BibTex
@article {MFAT740,
AUTHOR = {Dudkin, Mykola E. and Koshmanenko, Volodymyr D.},
TITLE = {Nonzero capacity sets and dense subspaces in scales of Sobolev spaces},
JOURNAL = {Methods Funct. Anal. Topology},
FJOURNAL = {Methods of Functional Analysis and Topology},
VOLUME = {20},
YEAR = {2014},
NUMBER = {3},
PAGES = {213-218},
ISSN = {1029-3531},
MRNUMBER = {MR3242705},
ZBLNUMBER = {1324.46045},
URL = {http://mfat.imath.kiev.ua/article/?id=740},
}