- MFAT
- Vol. 21 (2015), no. 3
- pp. 199-224
Compressed resolvents of selfadjoint contractive exit space extensions and holomorphic operator-valued functions associated with them
Yu. M. Arlinskiĭ
Department of Mathematical Analysis, East Ukrainian National University; Department of Mathematics, Dragomanov National Pedagogical University, 9 Pirogova Str., Kyiv, 01601, Ukraine
S. Hassi
Department of Mathematics and Statistics, University of Vaasa, P.O. Box 700, 65101 Vaasa, Finland
Abstract
Contractive selfadjoint extensions of a Hermitian contraction $B$ in a Hilbert space $\mathfrak H$ with an exit in some larger Hilbert space $\mathfrak H\oplus\mathcal H$ are investigated. This leads to a new geometric approach for characterizing analytic properties of holomorphic operator-valued functions of Krein-Ovcharenko type, a class of functions whose study has been recently initiated by the authors. Compressed resolvents of such exit space extensions are also investigated leading to some new connections to transfer functions of passive discrete-time systems and related classes of holomorphic operator-valued functions.
Key words: Selfadjoint extension, compressed resolvent, transfer function.
Full Text
Article Information
Title | Compressed resolvents of selfadjoint contractive exit space extensions and holomorphic operator-valued functions associated with them |
Source | Methods Funct. Anal. Topology, Vol. 21 (2015), no. 3, 199-224 |
MathSciNet | MR3521692 |
zbMATH | 06630268 |
Milestones | Received 01/02/2015; Revised 20/02/2015 |
Copyright | The Author(s) 2015 (CC BY-SA) |
Authors Information
Yu. M. Arlinskiĭ
Department of Mathematical Analysis, East Ukrainian National University; Department of Mathematics, Dragomanov National Pedagogical University, 9 Pirogova Str., Kyiv, 01601, Ukraine
S. Hassi
Department of Mathematics and Statistics, University of Vaasa, P.O. Box 700, 65101 Vaasa, Finland
Google Scholar Metrics
Citing articles in Google Scholar
Similar articles in Google Scholar
Export article
Citation Example
Yu. M. Arlinskiĭ and S. Hassi, Compressed resolvents of selfadjoint contractive exit space extensions and holomorphic operator-valued functions associated with them, Methods Funct. Anal. Topology 21 (2015), no. 3, 199-224.
BibTex
@article {MFAT777, AUTHOR = {Arlinskiĭ, Yu. M. and Hassi, S.}, TITLE = {Compressed resolvents of selfadjoint contractive exit space extensions and holomorphic operator-valued functions associated with them}, JOURNAL = {Methods Funct. Anal. Topology}, FJOURNAL = {Methods of Functional Analysis and Topology}, VOLUME = {21}, YEAR = {2015}, NUMBER = {3}, PAGES = {199-224}, ISSN = {1029-3531}, MRNUMBER = {MR3521692}, ZBLNUMBER = {06630268}, URL = {http://mfat.imath.kiev.ua/article/?id=777}, }
References
- N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Spaces, Monographs and Studies in Mathematics, Vol. 9, 10, Pitman Advanced Publishing Program, Boston-London-Melbourne, 1981.
- William N. Anderson Jr., Shorted operators, SIAM J. Appl. Math. 20 (1971), 520-525. MathSciNet
- W. N. Anderson Jr., R. J. Duffin, Series and parallel addition of matrices, J. Math. Anal. Appl. 26 (1969), 576-594. MathSciNet
- W. N. Anderson Jr., G. E. Trapp, Shorted operators. II, SIAM J. Appl. Math. 28 (1975), 60-71. MathSciNet
- Yu. M. Arlinskii, A class of contractions in Hilbert space, Ukrain. Mat. Zh. 39 (1987), no. 6, 691-696, 813. MathSciNet
- Yu. M. Arlinskii, Characteristic functions of operators of the class $C(\alpha)$, Izv. Vyssh. Uchebn. Zaved. Mat. (1991), no. 2, 13-21. MathSciNet
- Yury Arlinskii, The Kalman-Yakubovich-Popov inequality for passive discrete time-invariant systems, Oper. Matrices 2 (2008), no. 1, 15-51. MathSciNet CrossRef
- Yuri Arlinskii, Sergey Belyi, Eduard Tsekanovskii, Conservative realizations of Herglotz-Nevanlinna functions, Birkhauser/Springer Basel AG, Basel, 2011. MathSciNet CrossRef
- Yuri M. Arlinskii, Seppo Hassi, $Q$-functions and boundary triplets of nonnegative operators, in: Recent advances in inverse scattering, Schur analysis and stochastic processes, Birkhauser/Springer, Cham, 2015. MathSciNet
- Yu. M. Arlinskii, S. Hassi, H. S. V. Snoo de, $Q$-functions of Hermitian contractions of Krei n-Ovcharenko type, Integral Equations Operator Theory 53 (2005), no. 2, 153-189. MathSciNet CrossRef
- Yury Arlinskii, Seppo Hassi, Henk Snoo de, $Q$-functions of quasi-selfadjoint contractions, in: Operator theory and indefinite inner product spaces, Birkhauser, Basel, 2006. MathSciNet CrossRef
- Yury M. Arlinskii, Seppo Hassi, Henk S. V. Snoo de, Parametrization of contractive block operator matrices and passive discrete-time systems, Complex Anal. Oper. Theory 1 (2007), no. 2, 211-233. MathSciNet CrossRef
- Yury M. Arlinskii, Seppo Hassi, Henk S. V. Snoo de, Passive systems with a normal main operator and quasi-selfadjoint systems, Complex Anal. Oper. Theory 3 (2009), no. 1, 19-56. MathSciNet CrossRef
- Yu. Arlinskii and E. Tsekanovskii, Non-self-adjoint contractive extensions of a Hermitian contraction and theorem of M. G. Krein, Uspekhi Mat. Nauk 37 (1982), no. 1, 131-132. (Russian); English transl. Russian Math. Surveys 37 (1982), no. 1, 151-152.
- Yu. Arlinskii and E. Tsekanovskii, Quasi-self-adjoint contractive extensions of a Hermitian contraction, Teor. Funktsii, Funktsional. Anal. i Prilozhen. 50 (1988), 9-16. (Russian); English transl. J. Soviet Math. 49 (1990), no. 6, 1241-1247. CrossRef
- D. Z. Arov, Passive linear steady-state dynamical systems, Sibirsk. Mat. Zh. 20 (1979), no. 2, 211-228, 457. MathSciNet
- Earl A. Coddington, Selfadjoint subspace extensions of nondensely defined symmetric operators, Bull. Amer. Math. Soc. 79 (1973), 712-715. MathSciNet
- Earl A. Coddington, Extension theory of formally normal and symmetric subspaces, American Mathematical Society, Providence, R.I., 1973. MathSciNet
- V. A. Derkach, M. M. Malamud, Generalized resolvents and the boundary value problems for Hermitian operators with gaps, J. Funct. Anal. 95 (1991), no. 1, 1-95. MathSciNet CrossRef
- V. A. Derkach, M. M. Malamud, The extension theory of Hermitian operators and the moment problem, J. Math. Sci. 73 (1995), no. 2, 141-242. MathSciNet CrossRef
- Vladimir Derkach, Seppo Hassi, Mark Malamud, Henk Snoo de, Boundary relations and their Weyl families, Trans. Amer. Math. Soc. 358 (2006), no. 12, 5351-5400. MathSciNet CrossRef
- A. Dijksma, H. S. V. Snoo de, Self-adjoint extensions of symmetric subspaces, Pacific J. Math. 54 (1974), 71-100. MathSciNet
- R. G. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413-415. MathSciNet
- P. A. Fillmore, J. P. Williams, On operator ranges, Advances in Math. 7 (1971), 254-281. MathSciNet
- Seppo Hassi, Mark Malamud, Henk Snoo de, On Krei ns extension theory of nonnegative operators, Math. Nachr. 274/275 (2004), 40-73. MathSciNet CrossRef
- Tosio Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin, 1995. MathSciNet
- M. G. Krein, On Hermitian operators with defect indices equal to Unity, Dokl. Akad. Nauk SSSR 43 (1944), no. 8, 339-342. (Russian)
- M. G. Krein, Resolvents of an Hermitian operator with defect index $(m, m)$, Dokl. Akad. Nauk SSSR 52 (1946), 657-660. (Russian)
- M. G. Krein, Theory of selfadjoint extensions of semibounded operators and its applications. I, Mat. Sb. 20 (1947), no. 3, 431-498. (Russian)
- M. G. Krein, The description of all solutions of the truncated power moment problem and some problems of operator theory, Mat. Issled. 2 (1967), no. vyp. 2, 114-132. MathSciNet
- M. G. Krein, G. K. Langer, The defect subspaces and generalized resolvents of a Hermitian operator in the space $\Pi _\kappa $, Funkcional. Anal. i Prilo\v zen 5 (1971), no. 2, 59-71. MathSciNet
- M. G. Krein, G. K. Langer, The defect subspaces and generalized resolvents of a Hermitian operator in the space $\Pi _\kappa $, Funkcional. Anal. i Prilo\v zen 5 (1971), no. 3, 54-69. MathSciNet
- M. G. Krein, I. E. Ovcarenko, $Q$-functions and $sc$-resolvents of nondensely defined Hermitian contractions, Sibirsk. Mat. \v Z. 18 (1977), no. 5, 1032-1056, 1206. MathSciNet
- H. Langer, B. Textorius, On generalized resolvents and $Q$-functions of symmetric linear relations (subspaces) in Hilbert space, Pacific J. Math. 72 (1977), no. 1, 135-165. MathSciNet
- Heinz Langer, Bjorn Textorius, Generalized resolvents of dual pairs of contractions, in: Invariant subspaces and other topics (Timi\c soara/Herculane, 1981), Birkhauser, Basel-Boston, Mass., 1982. MathSciNet
- M. Neumark, Self-adjoint extensions of the second kind of a symmetric operator, Bull. Acad. Sci. URSS. S\er. Math. [Izvesti\`a Akad. Nauk SSSR] 4 (1940), 53-104. MathSciNet
- M. Neumark, Spectral functions of a symmetric operator, Bull. Acad. Sci. URSS. S\er. Math. [Izvestia Akad. Nauk SSSR] 4 (1940), 277-318. MathSciNet
- M. A. Neumark, On spectral functions of a symmetric operator, Bull. Acad. Sci. URSS. S\er. Math. [Izvestia Akad. Nauk SSSR] 7 (1943), 285-296. MathSciNet
- F. S. Rofe-Beketov, The numerical range of a linear relation and maximum relations, Teor. Funktsi\u\i\ Funktsional. Anal. i Prilozhen. (1985), no. 44, 103-112. MathSciNet CrossRef
- A. V. Straus, Generalized resolvents of symmetric operators, Izvestiya Akad. Nauk SSSR. Ser. Mat. 18 (1954), 51-86. MathSciNet
- Konrad Schmudgen, On domains of powers of closed symmetric operators, J. Operator Theory 9 (1983), no. 1, 53-75. MathSciNet
- Yu. L. Shmulyan, An operator Hellinger integral, Mat. Sb. (N.S.) 49 (1959), no. 4, 381-430. (Russian)
- Ju. L. Smul′jan, Certain stability properties for analytic operator-valued functions, Mat. Zametki 20 (1976), no. 4, 511-520. MathSciNet
- Bela Sz.-Nagy, Ciprian Foia\lfhooks, Harmonic analysis of operators on Hilbert space, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York; Akad\'emiai Kiad\'o, Budapest, 1970. MathSciNet
- Sergey M. Zagorodnyuk, Generalized resolvents of symmetric and isometric operators: the Shtraus approach, Ann. Funct. Anal. 4 (2013), no. 1, 175-285. MathSciNet CrossRef