# S. Hassi

Search this author in Google Scholar

### Selfadjoint extensions of relations whose domain and range are orthogonal

S. Hassi, J.-Ph. Labrousse, H.S.V. de Snoo

Methods Funct. Anal. Topology **26** (2020), no. 1, 39-62

The selfadjoint extensions of a closed linear relation $R$ from a Hilbert space $\mathfrak H_1$ to a Hilbert space $\mathfrak H_2$ are considered in the Hilbert space $\mathfrak H_1\oplus\mathfrak H_2$ that contains the graph of $R$. They will be described by $2 \times 2$ blocks of linear relations and by means of boundary triplets associated with a closed symmetric relation $S$ in $\mathfrak H_1 \oplus \mathfrak H_2$ that is induced by $R$. Such a relation is characterized by the orthogonality property ${\rm dom\,} S \perp {\rm ran\,} S$ and it is nonnegative. All nonnegative selfadjoint extensions $A$, in particular the Friedrichs and Krein-von Neumann extensions, are parametrized via an explicit block formula. In particular, it is shown that $A$ belongs to the class of extremal extensions of $S$ if and only if ${\rm dom\,} A \perp {\rm ran\,} A$. In addition, using asymptotic properties of an associated Weyl function, it is shown that there is a natural correspondence between semibounded selfadjoint extensions of $S$ and semibounded parameters describing them if and only if the operator part of $R$ is bounded.

### Compressed resolvents of selfadjoint contractive exit space extensions and holomorphic operator-valued functions associated with them

Methods Funct. Anal. Topology **21** (2015), no. 3, 199-224

Contractive selfadjoint extensions of a Hermitian contraction $B$ in a Hilbert space $\mathfrak H$ with an exit in some larger Hilbert space $\mathfrak H\oplus\mathcal H$ are investigated. This leads to a new geometric approach for characterizing analytic properties of holomorphic operator-valued functions of Krein-Ovcharenko type, a class of functions whose study has been recently initiated by the authors. Compressed resolvents of such exit space extensions are also investigated leading to some new connections to transfer functions of passive discrete-time systems and related classes of holomorphic operator-valued functions.

### Generalized zeros and poles of $\mathcal N_\kappa$-functions: on the underlying spectral structure

Methods Funct. Anal. Topology **12** (2006), no. 2, 131-150

Let $q$ be a scalar generalized Nevanlinna function, $q\in\mathcal N_\kappa$. Its gene alized zeros and poles (including their orders) are defined in terms of the function's operator representation. In this paper analytic properties associated with the underlying root subspaces and their geometric structures are investigated in terms of the local behaviour of the function. The main results and various characterizations are expressed by means of (local) moments, asymptotic expansions, and via the basic factorization of $q$. Also an inverse problem for recovering the geometric structure of the root subspace from an appropriate asymptotic expansion is solved.

### Generalized resolvents and boundary triplets for dual pairs of linear relations

Seppo Hassi, Mark Malamud, Vadim Mogilevskii

Methods Funct. Anal. Topology **11** (2005), no. 2, 170-187

### Operator models associated with singular perturbations

Henk de Snoo, Vladimir Derkach, Seppo Hassi

Methods Funct. Anal. Topology **7** (2001), no. 3, 1-21

### Generalized resolvents of symmetric operators and admissibility

H. S. V. de Snoo, V. A. Derkach, S. Hassi, M. M. Malamud

Methods Funct. Anal. Topology **6** (2000), no. 3, 24-55

### Operator models associated with Kac subclasses of generalized Nevanlinna functions

Henk de Snoo, Vladimir Derkach, Seppo Hassi

Methods Funct. Anal. Topology **5** (1999), no. 1, 65-87