Yu. Kovalev
Search this author in Google Scholar
Factorizations of nonnegative symmetric operators
MFAT 19 (2013), no. 3, 211-226
211-226
We prove that each closed denselydefined and nonnegative symmetric operator $\dot A$ having disjointnonnegative self-adjoint extensions admits infinitely manyfactorizations of the form $\dot A=\mathcal L\mathcal L_0$, where $\mathcal L_0$ is aclosed nonnegative symmetric operator and $\mathcal L$ its nonnegativeself-adjoint extension. The same factorizations are also establishedfor a non-densely defined nonnegative closed symmetric operator withinfinite deficiency indices while for operator with finitedeficiency indices we prove impossibility of such a kindfactorization. A construction of pairs $\mathcal L_0\subset\mathcal L$ ($\mathcal L_0$ isclosed and densely defined, $\mathcal L=\mathcal L^*\ge 0$) having the property${\rm dom\,}(\mathcal L\mathcal L_0)=\{0\}$ (and, in particular, ${\rm dom\,}(\mathcal L^2_0)=\{0\}$) is given.