A. Grod
Search this author in Google Scholar
Schrödinger operators with non-symmetric zero-range potentials
MFAT 20 (2014), no. 1, 34-49
34-49
Non-self-adjoint Schrödinger operators $A_{\mathbf{T}}$ which correspond to non-symmetric zero-range potentials are investigated. For a given $A_{\mathbf{T}}$, a description of non-real eigenvalues, spectral singularities and exceptional points are obtained; the possibility of interpretation of $A_{\mathbf{T}}$ as a self-adjoint operator in a Krein space is studied, the problem of similarity of $A_{\mathbf{T}}$ to a self-adjoint operator in a Hilbert space is solved.