V. Soldatov

Search this author in Google Scholar

Articles: 1

A criterion for continuity in a parameter of solutions to generic boundary-value problems for higher-order differential systems

Vladimir Mikhailets, Aleksandr Murach, Vitalii Soldatov

↓ Abstract   |   Article (.pdf)

Methods Funct. Anal. Topology 22 (2016), no. 4, 375-386

We consider the most general class of linear boundary-value problems for ordinary differential systems, of order $r\geq1$, whose solutions belong to the complex space $C^{(n+r)}$, with $0\leq n\in\mathbb{Z}.$ The boundary conditions can contain derivatives of order $l$, with $r\leq l\leq n+r$, of the solutions. We obtain a constructive criterion under which the solutions to these problems are continuous with respect to the parameter in the normed space $C^{(n+r)}$. We also obtain a two-sided estimate for the degree of convergence of these solutions.

All Issues